CFD Helps Design Marine Vessels to Withstand Extreme Waves

Most of Brazil’s offshore resources are in deep waters so Petrobras has fostered substantial expertise to develop these fields. One area of importance is the design of marine vessels to withstand the extreme waves. While the discovery of 50 billion barrels of oil in recent decades has been a boon to Brazil’s economic outlook, the location of the oil has produced challenging engineering problems. Lying hundreds of kilometers offshore under up to 3,000 meters of seawater, 2,000 meters of rock and 2,000 meters of salt, the oil reserves are some of the most difficult to access on Earth. Engineers are systematically using best design practices and computational fluid dynamics (CFD) to increase the safety of marine structures and vessels used to drill and produce oil from Santos Basin fields.

CFD simulation of an FPSO in extreme waves marine vesselsComputational fluid dynamics simulation of an FPSO in extreme waves.

Continue reading

CFD Time Transformation Delivers Accurate Turbomachinery Unsteady Transient Flows Faster Than Conventional Methods

Unsteady methods are becoming increasingly important in turbomachinery design and optimization because they model transient flows and performance more realistically. Unfortunately, using time-accurate CFD simulations to understand these unsteady flows in compressor stages can be computationally expensive. In recent years, ANSYS has been working on methods for modelling the transient flows in turbomachinery stages that require as few as single-blade passages per row but with equivalent accuracy. As a result, engineers can drastically reduce computational time and memory resources by up to 10X. Continue reading

Engineering a Hyperloop Pod with ANSYS

Since starting out as a segmented group of individuals passionate about high-speed technology, Berkeley Hyperloop (bLoop) has come a long way in our (roughly) two years of existence. What started as a vague mission to create a broader impact on the future of transport is now a tangible team of engineers, designers, marketers, logisticians and everything in between and we have no plans of stopping now. Of course, we didn’t do it alone. We’d be remiss if we did not acknowledge the generous support of sponsors like ANSYS, sponsors that have helped us realize the dream of designing and bringing a functional Hyperloop pod to that only existed in our wildest dreams up until a few months ago.

berkeley hyperloop pod ansys Continue reading

Digital Twin of a Motor and Pump System – Second Edition

About a year ago, my colleague, Eric Bantegnie, wrote a blog that described how we, along with our partners PTC, NI and HPE, had created a digital twin of a pump and one of its valves. We showcased this at PTC LiveWorx. I’m happy to announce that work continues with our partners on a new and expanded version of the digital twin of this pump and its valves to its motor and electric drive.

Why is this exciting and important? This enhanced digital twin demonstrates a multi-domain system including fluids, electromechanical, electromagnetics and thermal  aspects, coupled with a user friendly Human Machine Interface (HMI),  to solve a challenging problem that faces motor designers and operators — determining, monitoring and maintaining the optimal temperature at which to operate the motor and its components on a consistent basis. Why does this matter? Every 10 degree Celsius increase in operating temperature of the motor and components over their optimum temperatures decreases the life of the motor by half! Continue reading

Why Digitalization Needs Physics-Based Simulation

Digitalization, digital transformation, and digital twins have become key business initiatives at many companies. The goal of these initiatives ultimately is to accelerate revenue and profitability growth by speeding innovation, improving productivity, and increasing reliability across the enterprise. Industry leaders know that revenue and profitability both suffer when their product fails to meet design objectives, underperforms the competition or does not meet customer expectations. When your product fails, your customer is unhappy, your re-design costs will be higher than planned, your reputation may be damaged, or worse, you may go out of business.

Given the complexity of today’s products, how can companies be sure that they will deliver the most reliable and innovative products to the market? Moreover, how can they leverage their product superiority to deliver additional value to their customer and more profitability for their business? Continue reading

Enabling Digital Exploration with ANSYS 18.1

Digital exploration has never been more vital to long-term business success than it is today. The product design space is exploding, driven by increasingly smarter devices, advanced materials, and next-generation manufacturing technologies like 3-D printing and mass customization. At the same time sustainability and cost put pressure on identifying and eliminating unnecessary safety margins, while still ensuring long-term product strength and durability. Design engineers have an unprecedented opportunity to innovate and explore product designs, but also orders of magnitude more complexity to manage. Continue reading

How to Make Smart Digital Twins

digital twins dynardoDigital twins continue to grow in importance. Here in Germany, engineers at many companies, including Bosch and Daimler, are dealing with complex applications and the challenge to improve the product performance to come up with an optimized and robust virtual design. They need to determine and evaluate the robustness of virtual prototypes, considering scattering effects, which is difficult or not even possible in hardware tests. Software is used to accurately and rapidly generate proper samples and the resulting understanding saves them a lot of time and money in prototyping so they can stay competitive. Continue reading

How To Optimize Your Industrial Operations With Digital Twins

The first issue of ANSYS Advantage for 2017 focuses on a revolutionary disruptive technology that you may just be starting to hear about: the digital twin. At the most basic level, a digital twin is a 3-D digital model of an operating physical system. The physical system can be a jet engine, a power generator, a pipeline, a locomotive or an entire industrial plant. Someday, you will most likely have your own digital twin — a virtual copy of yourself — that will allow you and your doctor to predict the behavior of your body to fine tune treatments and optimize your health.

ANSYS Advantage Digital Twins issue

Continue reading

The Next Generation of Aircraft is Different from Anything You’ve Seen Before

A few weeks ago I got a very close look at a F-35, and was able to talk a bit with one of the test pilots. “This is not an aircraft,” he told me. It’s more a kind of spaceship.” I believe he is right. This is not an aircraft, at least not the kind of aircraft we are used to.

Two generations, face to face

Courtesy G.P. Torriani

Continue reading

ANSYS HPC: On to a Million Cores!

ANSYS CFD is on the verge of a second renaissance in high-performance computing (HPC). The first, spanning more than a decade, has seen tremendous leaps in both the depth and breadth of HPC capabilities. Depth (or heights, rather) in the size of the scalable clusters — first 1000s, then 10K, and recently 100K core counts — and breadth of coverage across solvers, physics, post-processing, even file I/O, covered the gamut of high-performance simulations. The trend, in fact, is exponential, as evident in this chart, and spans many years of ANSYS Fluent software releases. While there are other impressive scientific scalability demonstrations, ANSYS Fluent set the standard for industrial HPC CFD simulations. Continue reading