This Week’s Top 5 Engineering Technology News Articles

Our picks for interesting engineering technology news articles this week include lots of cool videos like a stick-on circuit that could power mobile devices from your fingertips and Disney’s Pixelbots and the software that controls it. And with opening day of baseball season behind us in the States, I felt it was only appropriate to feature an interesting piece about teaching kids the Science of Baseball.

Enjoy!

Continue reading

Designing Cool, Wearable Electronics with ANSYS and Synapse

nike fuel band Hardly a day goes by when we don’t hear about the upcoming revolution in wearable devices or the Internet of Things (IoT). The $3.2B acquisition of Nest® by Google clearly got noticed by all of us. But, the Nest thermostat is just one example of connected devices that are poised to change our lives over the coming years. The Nike FuelBand® and Fitbit® have already been helping us shape up for some time. Continue reading

How Can You Get More From An Oil Pump?

Imagine you have an oil pump in your car that has its outlet blocked. The pump is trying to throw the oil out but since the outlet is blocked the pressure in the pump keeps increasing. The excessive pressure that develops in the pump can be catastrophic to its strength and therefore life. This is precisely what happens when you try to operate the pump under extreme cold conditions, when the viscosity of the lubricant increases so much that the pump almost behaves as if its outlet has been blocked.

pumpsThis is a very common design scenario for pump manufacturers. Estimation of what is called as “shut-off” pressure and its implications on the structural integrity of the pump are key concepts that every pump manufacturer should bear in mind while designing pumps. Interestingly, simulations today allow manufacturers to develop deep understanding of such phenomenon and help them to design pumps, that perhaps they could not have, with just physical testing and prototyping. Continue reading

Educating the Next Generation of Engineers

This is an exciting time at universities and colleges around the world. Innovations in education make it easier, more accessible and more fun for students to learn — and for professors to educate the next generation of engineers. The rapid pace of interdisciplinary, collaborative academic research is directly (and indirectly, through relationships with industry) reshaping our daily lives in ways we could not have imagined a decade ago. More students participate in the challenge of gaining engineering knowledge today than ever before. In the classroom, in the lab or during student competitions, computer-aided simulation is a vital tool in engineering education. Our latest issue of ANSYS Advantage magazine features how the academic world uses engineering simulation. Continue reading

What’s New with Contact Technology in ANSYS 15.0?

contact technology ansys 15Contact technology is used extensively throughout ANSYS Mechanical and Mechanical APDL to enforce compatible behavior between different portions within a model. With each Release, ANSYS continues to improve the breadth and robustness of our contact technology.  In ANSYS 15.0, we have enhanced contact still further to help users build models more efficiently without compromising on robustness.

Trim Contact, first introduced in ANSYS 14.5, is a great tool for reducing the number of unnecessary contact and target elements in large assemblies. In ANSYS 15.0, we have changed the default to activate trim contact even for application involving large deflection.

Continue reading

Optimizing Auto Combustion Using Predictive Simulation Technologies

Spray-droplet visualization at the start of injection for a Diesel sector-mesh simulation

Spray-droplet visualization at the start of injection for a diesel sector-mesh simulation

Today’s automotive community is increasingly called upon to think strategically and form unique relationships that expand its reach in a new era of cross-industry collaboration. We’re eager to share our excitement about Reaction Design’s new role at ANSYS (especially as it applies to developing optimal auto combustion processes) and reveal our shared vision for our more powerful and predictive simulation technologies.

We’re looking forward to telling you about it at the upcoming SAE 2014 World Congress and Exhibition, being held April 8 through 10 at Detroit’s Cobo Center. A must-attend for the automotive engineering community, this event represents an unparalleled opportunity to explore new technology through both technical sessions and the Innovators Only Exhibition. Continue reading

Circuit Simulation Now Included in ANSYS HFSS for More Efficient Electronic System Design

Today, we announced that our ANSYS HFSS users can reduce design time and cost, while optimizing complete electronic system performance, thanks to linear circuit simulation embedded within the latest version of this software.

Designer SIWaveAt a high level, a more streamlined simulation workflow enables engineers to focus on enhancing complete system reliability and signal quality as well as analyzing electromagnetic interference. New HFSS product options for radio frequency (RF) and signal integrity (SI) analyses are also available — making high-frequency (HF) and high-speed electronic device design even more comprehensive. Continue reading

The State of the Art for Electric Motor Design

Have you noticed that electric machines are everywhere these days? They are present in industrial equipment, cars, planes, household appliances, computers, mobile devices and more. The applications for both large and small motors are just exploding. Power transfer technologies in airplanes, such as the central hydraulic system and flight control actuation, are being replaced with electric motors. Electric and hybrid electric vehicles are powered by electric motors. When you put your phone on vibrate, the pulsation is created by an electric motor! The increased use of electric machines is driven by the global demand for more-automated and power-efficient products. The key is to find a better process to take an electric motor design from start to end. Continue reading