Florian Menter

About Florian Menter

Dr. Menter is a world-recognized expert in turbulence modelling. He developed the widely used Shear-Stress Transport (SST) turbulence model, which has set a milestone in the accurate prediction of aerodynamic flows. He has also contributed to the formulation of one-equation turbulence models, advanced near wall treatment of turbulence equations, transition modelling and unsteady flow models. He has been in charge of the turbulence modelling program at ANSYS for more than 15 years and has been involved in a wide range of industrial modelling challenges. He has published more than 50 papers and articles at international conferences and in international journals. Most recently, Dr. Menter has been involved in the implementation of new turbulence models for unsteady flow simulations, including Scale-Adaptive Simulation (SAS) and Embedded/Zonal LES models. These models are particularly relevant for the many industrial applications where time varying information is essential to the engineering outcomes (such as aerodynamics, acoustics, combustion, fluid-structure coupling, etc.).

Taking Laminar-Turbulent Transition Modeling to the Next Level

Flows around aerodynamic bodies, like aircraft wings, helicopter blades, wind turbines and turbomachinery components develop boundary layers that, to a large extent, define their performance. The boundary layers can either be laminar or turbulent depending on numerous factors, like Reynolds number, freestream turbulence levels and surface roughness, to name a few. Understanding which type of boundary layer is present, and the location of the laminar-to-turbulent transition point under varying operating conditions, is essential for accurate predictions of the performance of aerodynamic devices. Continue reading