About Paolo Colombo

Paolo Colombo is the Aerospace & Defense Global Industry Director at ANSYS. He was born in Italy in 1970, joined the Air Force as student pilot in 1992 and, though his career took a different path, he is still regularly flying. From 1999 his passion for advanced technologies brought him to work with companies' managers and executives on emerging technologies in product engineering, rapid prototyping, additive manufacturing and engineering simulation. He joined ANSYS in 2010. Paolo holds a BSc and an MBA majoring in Innovation management.

Looking Forward to AIAA SciTech Forum

In a few days, I’ll be in Florida at the AIAA SciTech Forum, along with some of our technology experts. This is the place where you can get an inside look at how much innovation is going on in the aerospace industry today. At ANSYS, we are constantly expanding our simulation platform capabilities through internal development and integration, acquisitions and partnership. Let me highlight just a tiny part of what happened in 2017 and what you can “touch” at our booth at SciTech.

Continue reading

Investigating Placement of Antennas Inside an Aircraft Fuselage

You may be surprised to learn that a standard passenger jet can have 30 to 50 antennas protruding from the aircraft’s external surface, producing drag forces that can drastically reduce fuel efficiency at a time when airlines are trying to reduce energy consumption. Most antenna designs are engineered for safety purposes, such as air traffic control, traffic collision avoidance, instrument landing systems and distance measuring equipment. Increasingly, antennas are being added to meet passenger demand for more and faster Wi-Fi access, in-flight TV and cellphone applications.

aircraft antennas

Antennas are mounted on the exterior of today’s airliners

Continue reading

Enhancing the Accuracy of Full-body Scanners for Improved Airport Security

If you’ve traveled by plane in recent years, you know the airport security drill: Put all your possessions through the X-ray detector, empty your pockets and step into one of the full-body scanners — or millimeter-wave holographic scanner, to use its official name. After you raise your hands above your head, the scanner sends out millimeter waves (mm-waves) that penetrate your clothing and bounce off your skin — or any other object you might be trying to conceal under your clothing, like a weapon of some sort. (The mm-wave radiation is 10,000 times less powerful than a single cellphone call, so you need not be concerned about any health effects.) An antenna array in the sweeping scanner device detects the reflected mm-waves and reconstructs an image of your body.

Airport mm-wave scanner

Continue reading

What We Can Learn from the Wright Brothers on National Aviation Day

Tomorrow is Orville Wright’s birthday and we celebrate National Aviation Day and the incredible progress made in aviation in just over 100 years. It was December 1903 when Orville became the first pilot of an engine powered aircraft, staying aloft for 12 seconds and covering a distance of 120 ft. at 20 ft AGL. Five years later he was able to stay aloft for an entire hour, reaching an altitude of 350 ft.

Indeed, the Wright brothers are a great example for all those who want to innovate. Many pioneers lost their lives or were badly injured in their attempt to demonstrate their ideas, test new concepts and to tame phenomena they were still not able, sometimes very far, to understand and master. Continue reading

The Engineering Behind Why It’s Too Hot to Fly

I’ve read a lot of articles talking about an interesting fact: this summer was so hot that in some cities like Phoenix aircraft could not fly. If you are an engineer or a pilot, it should not be a surprise that in hot weather an aircraft’s performance can deteriorate until the point it is unsafe to attempt take off. But maybe you have not considered all the possible causes of why it’s too hot to fly. I will try to explain things in a very basic and simplified way, for the benefit of those who are not familiar with these phenomena.

American Airlines canceled dozens of flights out of Phoenix on June 19 due to extreme heat. (AP Photo/Matt York)

Continue reading

Why Startups and New Players are Driving Innovation in the Space 2.0 Arena

With a clear mission in mind, huge government funding and thousands of talented scientists, the early pioneers of space exploration were disrupting innovators, able to achieve what many thought impossible. Then organizations grew in size, and projects and goals multiplied while public funding was often in doubt. Despite other significant success, this led to a slowdown in the innovation pace. Now, another wave of innovators has come: Space 2.0 players.

With no history, no legacy of tools and processes and no constraints in workflow design, they were able in a few years to attract huge private funds and challenge the leadership of the big established players.

Both the old players and the newcomers rely on simulation, but I see a big difference in the results they get in terms of efficiency, costs and innovation pace. The secret is in how they implement it. Continue reading

The Next Generation of Aircraft is Different from Anything You’ve Seen Before

A few weeks ago I got a very close look at a F-35, and was able to talk a bit with one of the test pilots. “This is not an aircraft,” he told me. It’s more a kind of spaceship.” I believe he is right. This is not an aircraft, at least not the kind of aircraft we are used to.

Two generations, face to face

Courtesy G.P. Torriani

Continue reading

Ready for Take-off and Flight

image of Paolo Columbo in jetThe last time I flew on a military plane was 20 years ago, but I still remember the incredible emotion I felt. It was exactly the same way I felt recently while scrolling the check-list from the rear seat of an L39 Albatros as I got it ready for take-off and flight.

Picture this: All the caution-panel yellow and red lights in front of me are on, since this is a routine test. Even so, I can’t avoid thinking about the complexity of the plane, which is a basic jet aircraft compared to today’s standard: It was designed in the 1970s as an advanced trainer for pilots. There is no fly-by-wire system. It incorporates a simple avionic and no embedded software. This means that the pilot has to do all of the work. Continue reading

The New Frontier of Embedded Software Cont’d

Continuing from my post yesterday about the new frontier of embedded software.

Nowadays it is not enough to just fly the plane, pilots have to manage tons of information while flying and they are connected with  other units on the battlefield through a network that allows real time co-ordination.

image of the F-104 Starfighter Cockpit

F-104 Starfighter Cockpit

image of Lockheed Martin F22A Raptor Cockpit

Lockheed Martin F22A Raptor Cockpit

Have you seen the cockpit of a new generation aircraft? Google the F-22 or the F-35 and compare them with the one from an F-104;  you will not recognize a single piece of equipment. Head to YouTube and enjoy a video showing the maneuverability of one of these modern airplanes. Amazing!

Today simulation is widely used, aerodynamics is now explored in detail so engineers can master all the phenomena that affect the flight even in extreme conditions, and new configurations allow these aircraft to challenge physics laws… and win!!  I’ve seen a Eurofighter Typhoon during a test flight operate at 80 knots and at no more than 100 feet from the runway — almost still in the air — flying with an angle of attack of 60 degrees. This could have been considered science fiction by an F-104 pilot.  I’m amazed by the maneuverability of the F-22 or what an SU37 can do. I’m always impressed and fascinated with how aircraft designers created these masterpieces of engineering. Continue reading

The New Frontier of Embedded Software – Part One

A few months ago at the ANSYS Worldwide Sales Conference, I had the opportunity to view the many advancements and get briefed on other news concerning our simulation platform. As part of this learning experience, I thoroughly enjoyed meeting our newest colleagues from Esterel Technologies and finding out how embedded software is becoming key in the development of a new generation of products. From aerospace to automotive and transportation, from medical devices to energy generation plants, it is an important piece of the Simulation-Driven Product Development vision. In a 2-part blog, I’ll explain what this means to me.

Part One

image of the Lockheed F-104C Starfighter

Lockheed F-104C Starfighter

As I’ve mentioned before I’m quite fond of aircraft, so I’ll illustrate this point by talking about some very famous military planes, starting with the glorious Lockheed F-104 Starfighter. This incredible aircraft was designed in the early 1950’s by a myth among engineers — Kelly Johnson. His goal was to create a light, easy-to-maintain, simple and cost-effective airplane that would climb as fast as possible to operating height and engage in hostile contact with radar-guided missiles. Continue reading