About Pierre Thieffry

Product line manager for structural mechanics solutions. I joined ANSYS, Inc. in 2002 serving first as an application engineer, then moving to the role of technical solution specialist for structural mechanics. I hold an engineering degree and PhD in Mechanical Engineering.

CFD and Structural Meshing: Who Moved My Node?

meshing“Meshing”… Usually throwing this single word to a group of structural or CFD analysts will start interesting and passionate discussions. Meshing is definitely a key part of the simulation process and requires attention. As analysts, how many hours did we or do we spend on meshing? Probably too many —  especially if you have been in the simulation world for many years and started when automation of meshing was not so common. But after all, meshing is just one of the tools that we need to get accurate results and we should spend more time looking at simulation results than meshing our models. Continue reading

Efficient Simulation of Fabricated Structures

I recently had the chance to visit a customer building, among other products, special cranes and lifting equipment — typical fabricated structures mostly made of welded plates and tubes. As I walked through their facility, the size of the equipment struck me: very thick metal plates, massive tubes to support heavy loads — I’m not a tall guy but I felt even smaller walking by such huge structures! And, as we discussed the simulation of such models, I realized the FEA models were using what we call “thin” elements, in other words beams and shells — a bit of a paradox. Continue reading

Stay CAD Connected

image of CAD parameters geometryRecently my colleague, Simon Pereira, published his blog on the use of parameters with PTC’s Creo CAD system.  I don’t think we can stress enough the importance of the connection between your CAD system and your simulation tool, be it FEA, CFD or electronics.

All simulations start from a geometry. The geometry can be a very early version of a given design or a manufacturing-ready version of it. You then need to import it into your simulation tool to analyze it. Continue reading

ANSYS User-Generated Videos You Should Check Out!

Whether you are an experienced user or beginning with our tools, or even looking to know what ANSYS tools can do for you, you can benefit from great videos that are available on YouTube. I am amazed at the quality of some of these user-generated videos. Looking back at my playlist from last year, I can give you a short list to start with. Continue reading

Exposing Complex APDL Scripts in a User-Friendly Way

People often approach me saying: “I’m convinced of the benefits of simulation, but we don’t have any experts in our company to run the powerful software” or “I would like to deploy simulation from my few CAE experts to a larger fraction of my engineering force, but they don’t have the necessary skills to run ANSYS and it’s difficult to hire new staff”. Software customization can definitely help in both situations. Our answer to this is the Application Customization Toolkit (ACT).

You may recall a previous blog from me about Combining APDL with ANSYS Workbench for Structural Simulations. Here’s another great example of how the Application Customization Toolkit (ACT) can help you exposing your existing APDL scripts in ANSYS Mechanical. Continue reading

FEA Simplifies the Design of Complex Composite Structures

When I first got introduced to composites as a student (many years ago!), I remember having felt amazed at how powerful yet complex materials they are. In a recent interview published in Composites in Manufacturing, my colleague Marc Wintermantel expressed the challenge of designing composites products very nicely: “When a designer uses simulation software to define composite part points in space they have a tremendous amount of additional design options and parameters to deal with.[…] These options are so large that you need to depend on optimized simulation tools because the computations go way beyond most people’s abilities to perform these tasks by hand”. And indeed, how can an engineer figure out what the optimum stackup is for a given applications with so many possibilities for fabrics thicknesses, orientations or location choices? Steel or aluminum are much easier to deal with! Continue reading

Combining APDL with ANSYS Workbench for Structural Simulations

best of both worldsSometime ago, I wrote an article entitled Best of Both Worlds: Combining APDL with ANSYS Workbench for Structural Simulations. When I read this article today, I think of three things:

  1. We have made a lot of progress in our latest releases so the use of MAPDL is reduced or irrelevant for the most common tasks we perform. With our added options, loads, or boundary conditions, models can easily be accessed by everyone without commands.
  2. The content of the paper is still relevant, as many of you have created and validated APDL scripts over the years that you can reuse “as is” in the Mechanical application.
  3. And last but not least, you can now give all of your scripts a Workbench flavor by integrating them in the Mechanical application through buttons, menus and new items in the simulation tree.

Continue reading

Design of Solid Composites Made Simple

As you’ve learned from a past blog by Joe Manich, the acquisition of EVEN AG by ANSYS has added some layers to ANSYS Mechanical. The design of composites is a very exciting and challenging topic, and our new colleagues will definitely help us to further enhance our solutions.

I started hearing about composites many years ago during my engineering studies. At that time, my understanding of composites was not really deep. The applications I saw were mostly for thin structures, such as ship hulls and aerospace components. Now that I’m more involved with composites, I realize how vast the subject is. I’m seeing more complex structures being made out of composites, such as fan blades, tanks and pipe components. These are all but thin structures, and their simulation requires more than just mere definition of plies on a given surface. With thicker parts comes the need for looking at stresses in the direction of the thickness as well as out of the plane shear stresses that
thin models cannot accurately capture. Continue reading