Sudhir Sharma

About Sudhir Sharma

Sudhir Sharma is the director of high tech industry strategy and marketing at ANSYS. Prior to joining ANSYS, he served in key managerial and technical roles at MathWorks, Texas Instruments, Cirrus Logic, and Compaq Computer Corp. He has designed more than a dozen ASICs and authored 19 U.S. patents for innovative wireless communication, computer networking, video and image processing, and semiconductor memory designs.

Design Automation Conference and LiveWorx – Big on IoT and Machine Learning

In June, I attended the Design Automation Conference in Austin, TX and LiveWorx in Boston, MA.  I would like to share some key observations from both events.

  1. The Internet of Things is going to be big; very big!
  2. Success requires partnerships.
  3. IoT is about monetizing data.
  4. Engineering simulation is essential.

The Internet of Things is going to be big!

At the just concluded Design Automation Conference in Austin, speaker after speaker stressed this.

Silicon Labs CEO, Tyson Tuttle, noted that there will be 70 billion Internet connected devices by 2025 with accompanying semiconductors to power them. He repeated McKinsey’s forecast the the Internet of Things will drive between $4 -11 trillion in global economic impact by 2025. Continue reading

Why Digitalization Needs Physics-Based Simulation

Digitalization, digital transformation, and digital twins have become key business initiatives at many companies. The goal of these initiatives ultimately is to accelerate revenue and profitability growth by speeding innovation, improving productivity, and increasing reliability across the enterprise. Industry leaders know that revenue and profitability both suffer when their product fails to meet design objectives, underperforms the competition or does not meet customer expectations. When your product fails, your customer is unhappy, your re-design costs will be higher than planned, your reputation may be damaged, or worse, you may go out of business.

Given the complexity of today’s products, how can companies be sure that they will deliver the most reliable and innovative products to the market? Moreover, how can they leverage their product superiority to deliver additional value to their customer and more profitability for their business? Continue reading

How To Optimize Your Industrial Operations With Digital Twins

The first issue of ANSYS Advantage for 2017 focuses on a revolutionary disruptive technology that you may just be starting to hear about: the digital twin. At the most basic level, a digital twin is a 3-D digital model of an operating physical system. The physical system can be a jet engine, a power generator, a pipeline, a locomotive or an entire industrial plant. Someday, you will most likely have your own digital twin — a virtual copy of yourself — that will allow you and your doctor to predict the behavior of your body to fine tune treatments and optimize your health.

ANSYS Advantage Digital Twins issue

Continue reading

Energy Efficiency – Do You Have A Goal and Are You Measuring Up?

In honor of Earth Day, which was celebrated this past weekend, I would like to share my perspective on energy efficiency.

Every month, I receive a home energy usage report from my friendly utility company.  I had been puzzled for years why I was using 50 or 60% more energy than my efficient neighbors. At social gatherings, I asked my friends about their energy efficiency numbers and we collectively bemoaned the mysterious efficient neighbors. Who are these people? Do they even heat or cool their homes?

energy efficiency neighborhood reportingThen last year, I purchased and installed the Nest thermostat. My utility company even pitched in with a price discount offer. Over time my energy usage has declined when compared to my neighbors. The most recent report shows that I used 21% more energy than my efficient neighbors. This is down from 51% in the similar period two years ago. The artificial intelligence algorithms and smart silicon are making a difference! Continue reading

Are You Keeping Up with the Converged Digital Economy?

I just returned from the ANSYS 18 events in China and Taiwan where I shared my perspective on the convergence of industries. I used the rapid pivot of automotive and high-tech industries towards each as an example. And while I had ample presentation material, Intel’s $15 billion purchase of Mobileye was a great validation. Mobileye is well-known pioneer in autonomous vehicle technologies. It is nice to have $15 Billion dollars to make your point!  This illustration from the Wall Street Journal also showcased similar recent investments by other companies.

Continue reading

Speeding High-Tech Innovation

Since the 1960s, Dr. Gordon Moore’s prediction that computing performance will double every 12 to 18 months has held true. More recently, the gains in computing performance have been enabled by a combination of hardware and software technologies, such as multi-core, multi-threaded designs. The conveniences of the modern world — ubiquitous communication through internet-enabled phones, electronic payments and digital streaming, to name a few, are partly due to continuous engineering innovations delivered through cheaper, faster, more-precise electronics. Continue reading

The Changing Landscape of IoT Product Design

The Gartner Hype Cycle charts are a peek into the future. They graphically project where various technology trends are along a maturity timeline. The most recent Hype Cycle identifies several megatrends, including digital business technologies and new design and innovation approaches, such as IoT product design.

Continue reading

ANSYS Advantage Connects You to IoT

ANSYS Advantage IoTEvery day we hear about a new internet-enabled product — or two, or three, or a dozen. Consumer products are increasingly more connected including appliances, automobiles and traditional electronics like smartphones and tablets. In the industrial world, factories, aircraft, distribution facilities, power plants and many other things are being monitored by sensors and communications networks to provide feedback on production, maintenance and efficiency. Importantly, these devices collect data that allow manufacturers to understand how products are used so that they can develop better things that more closely fit our needs. Engineers designing smart, connected products need to address competing and complex challenges, including size, weight, power, performance, reliability, durability. For example, engineers may need to design reliable sensors, high-speed communication and networking equipment, or supercomputers that process vast amounts of data. How can designers ensure that their products will work flawlessly in the real world? Continue reading

Speeding Innovation – Advancements in High Tech Simulation with ANSYS 17.0

It isn’t too much of a stretch to say that Moore’s Law can be credited with many of our technological advances. Since the 1960s, Gordon Moore’s prediction that computing performance will double every 12 to 18 months has been accepted as gospel. And the proof is all around us. The conveniences of the modern world — ubiquitous communication through Internet enabled phones, electronic payments, and digital streaming, to name just a few examples — are all due to continuous engineering innovations delivered through cheaper, faster, more precise electronics. Continue reading

Electrification – The Need for Optimizing Power, Performance and Cost

The electrification of our world continues at a rapid pace. Having established a strong footprint across the globe via communication technologies, the high tech industry is now forming alliances with automotive companies to make our cars smarter. You need look no further than the 2016 Consumer Electronics Show, where the automobile industry stole the show with their demonstrations of autonomous vehicles, which are moving ever closer to market. Continue reading