Student Space Systems Aims High With Liquid Rocket Engine

In 2014, Student Space Systems (SSS) began at the University of Illinois at Urbana-Champaign as a high-powered rocketry group. In those early days, most of the rocket building was done simply with prefabricated parts. Since then, SSS has progressed to designing and creating its own rocket technology, including power electronics, telemetry and propulsion systems. One of its biggest goals — and challenges — has been to create a liquid-fueled rocket engine built with additive manufacturing techniques.

SSS members prepare Olympus rocket for flight in Mojave Desert Continue reading

The Need for Speed Drives NASCAR’s Richard Childress Racing to the Cloud

In the world of stock-car racing, finding even the smallest competitive advantage is the difference between winning and losing.

That’s why at Richard Childress Racing, we design and build our race cars end-to-end. We engineer and machine our own chassis and suspension components, we design and fabricate our own bodies, and we test and build our own engines. Everything is built from the ground up at RCR.

Continue reading

Topology Optimization in ANSYS 18.1 – Motorcycle Component Example

If you’re not familiar with topological or topology optimization, a simple description is that we are using the physics of the problem combined with the finite element computational method to decide what the optimal shape is for a given design space and set of loads and constraints. Typically our goal is to maximize stiffness while reducing weight. We may also be trying to keep maximum stress below a certain value. Frequencies can come into play as well by linking a modal analysis to a topology optimization.

Why is topology optimization important? First, it produces shapes which may be more optimal than we could determine by engineering intuition coupled with trial and error. Second, with the rise of additive manufacturing, it is now much easier and more practical to produce the often complex and organic looking shapes which come out of a topological optimization. Continue reading

ANSYS Simulation Proves Invaluable to University of Central Florida’s Formula SAE Team

Knights Racing is a Formula SAE team from the University of Central Florida. Formula SAE is an international competition in which students design and build a race car as well as manufacture the car’s components. During the competition, teams are not only assessed based on vehicle performance but in static events like a business case presentation and engineering design review. This year, our team participated in the Formula SAE Michigan competition located at Michigan International Speedway.

university central florida formula sae team Continue reading

How ANSYS Simulation is Helping Virginia Tech Team to Optimize Hyperloop Pod

After placing fourth at the SpaceX Hyperloop Design Weekend in January 2016, as well as the first ever Hyperloop Pod competition in Los Angeles, California, Hyperloop at Virginia Tech is working tirelessly toward improving every aspect of their pod. The Virginia Tech design team comprises over 60 people, branching out to all majors within the university, from business to aerospace engineering. We currently follow a tick-tock engineering cycle, innovating for one competition, then optimizing for the next using ANSYS Simulation. Continue reading

In Search of a Better Design with Topology Optimization

When reducing the mass of your models, are you also optimizing for other important design elements such as thermal performance, fabrication constraints or if the casting needs to be water-tight?

Thermal problems are very common in engineering design such as automotive powertrain, electronic cooling system, etc. Topology optimization can also be applied for thermal analysis to improve the cooling performance or for coupled thermal-mechanical analysis to improve the thermal and structural performance simultaneously. Continue reading

UC Motorsports Wins the Dynamic Event with ANSYS CFD

Each year the University of Canterbury Motorsport (UCM) team in New Zealand pushes the boundaries of what can be achieved in racing; in 2016 they overcame their greatest challenge to date. After three years (2013-2015) of competing in the Australasian Formula SAE competition with an internal combustion engine vehicle , the team decided in 2016 to design and build New Zealand’s very first four-wheel drive (4WD) electric vehicle for the competition. The results were remarkable: UCM made history by becoming the first team with an electric vehicle to win a dynamic event at the Australasian Formula SAE competition.
Continue reading

True-Load Software and ANSYS Workbench Solve Difficult Strain Challenges

As the founder and president of Wolf Star Technologies and the creator of True-Load software, which calculates the loads from measured strain occurring in moving vehicles, I would like to tell you a little about the struggles and triumphs I encountered (and overcame) in my engineering career and how this led to the creation of True-Load. This has culminated in the successful integration of True-Load into the ANSYS Workbench platform, so more engineers than ever will have access to my software and be able to integrate it with their ANSYS simulations. Continue reading

Engineering a Hyperloop Pod with ANSYS

Since starting out as a segmented group of individuals passionate about high-speed technology, Berkeley Hyperloop (bLoop) has come a long way in our (roughly) two years of existence. What started as a vague mission to create a broader impact on the future of transport is now a tangible team of engineers, designers, marketers, logisticians and everything in between and we have no plans of stopping now. Of course, we didn’t do it alone. We’d be remiss if we did not acknowledge the generous support of sponsors like ANSYS, sponsors that have helped us realize the dream of designing and bringing a functional Hyperloop pod to that only existed in our wildest dreams up until a few months ago.

berkeley hyperloop pod ansys Continue reading

How to Make Smart Digital Twins

digital twins dynardoDigital twins continue to grow in importance. Here in Germany, engineers at many companies, including Bosch and Daimler, are dealing with complex applications and the challenge to improve the product performance to come up with an optimized and robust virtual design. They need to determine and evaluate the robustness of virtual prototypes, considering scattering effects, which is difficult or not even possible in hardware tests. Software is used to accurately and rapidly generate proper samples and the resulting understanding saves them a lot of time and money in prototyping so they can stay competitive. Continue reading