MUR Motorsports Leverages ANSYS Simulation to Win

As the winners of the Formula SAE competition Australia last year, MUR Motorsports is looking to repeat our success by designing a more aggressive aerodynamics package and optimizing the weight of the vehicle. These targets were deemed by our in-house lap simulator to be two of the driving factors for winning the F-SAE Australasian competition in December. To effectively manage our workload and streamline the design process, we used ANSYS simulation software in almost all of our subteam’s design processes. Continue reading

Why Do Supercomputing Records Even Matter?

Some world records are the stuff of legend. The official land-speed record is 763 mph.  The tallest man living measures 251 cm. The fastest ball bowled by any bowler is 100.23 mph and the heaviest vehicle pulled over a level, 100 ft course weighs 68,090 kg.  Compared to these feats, records for supercomputing can seem a little flat. However, they are no less impressive and indeed, and stand to have a far greater impact on our day-to-day lives. Continue reading

Digital Twins Enable Industrial Internet of Things Opportunities

Digital twins, supported by sensors and communication infrastructure, are rapidly changing the business models at many companies and are expected to create trillions in global economic value. In 2014, at the 3rd Annual Minds & Machines Conference, General Electric Chairman and CEO Jeffrey Immelt declared, “If you went to bed last night as an industrial company, you are going to wake up in the morning as a software and analytics company.” He announced that GE would make its Predix operating system for powering the industrial internet to any company in 2015. Yet, despite the excitement that year data from Accenture shows that only 10 percent of market leaders understand the underlying business models and long-term implications of IIoT and digital twins. Continue reading

ANSYS Advantage Magazine: Breakthrough Energy Innovation and Sustainable Design

ANSYS Advantage - Breakthrough Energy Innovation Sustainable Design

Energy systems innovation and sustainable design are key business initiatives in almost every industry sector. And, these initiatives are not only required to meet customer demand for “green products” or to satisfy environmental regulations. Many businesses have realized there is an opportunity to drive new growth with energy innovations. The new issue of ANSYS Advantage highlights the many ways our customers are delivering these energy innovations by leveraging the power of engineering simulation.

Continue reading

Electromagnetic Braking Simulation by the CMU Hyperloop Team

Elon Musk’s Hyperloop concept, a futuristic train in a pneumatic tube that propels passengers across the country at near super-sonic speeds, could — if successful — revolutionize mass transportation. The Hyperloop, theoretically, can achieve fantastic speeds of up to 760 miles an hour because the train — or pod — magnetically levitates over an I-rail track inside the continuous metal tube, eliminating friction, while the vacuum in the tube itself minimizes air resistance and drag.

As a competitor in the Spacex Hyperloop pod competition, Carnegie Mellon University’s Hyperloop team is building a version of the Hyperloop pod using simulation with the theory that electromagnetic braking is the most effective way to slow the Hyperloop pod. Continue reading

Systems Simulation Advances With ANSYS’ Acquisition of Medini

We’ve discussed the need to simulate a full system quite a bit in this blog over the years. The need is clear: as products become smarter and more complex, component or sub-system simulation alone isn’t sufficient. As automobiles become computers on wheels, as your mobile phone has more compute power than the desktops of only a few years ago, there are new ways for products to fail. In other words, systems safety and reliability analysis is more critical than ever. Continue reading

Industrial Internet of Things Powers a Transformation of Business Opportunities

For over 30 years, ANSYS has been supplying GE with sophisticated first principle modeling tools that have enabled virtual prototyping of some of the worlds most complex products. The relationship continues to mature as the two explore the marriage of GE’s Predix Platform with ANSYS’ Simulation Platform to create the potential to enhance the monetization of asset health monitoring and the industrial internet of things. This marriage further enables closed loop feedback with engineering to accelerate NPI and drive costly warranty costs out.

The ANSYS Simulation Platform utilizes a variety of parameters sensed, collected and sorted by the Predix Platform, parameters such as temperature, pressure and vibration to create a simulation based physics model that represents a digital twin of an asset that can be used to accurately predict asset health. Continue reading

Is the Aviation Industry Innovating Fast Enough to Deliver Sustainable Design?

This year has been one of significant milestones for the aviation industry. Two examples are Boeing’s hundredth year and the UK Royal Aeronautical Society’s 150th. Times like this provide a chance to reflect on some of the key technical innovations that have made major contributions to performance, safety, comfort, economy, energy innovation and sustainable design in the industry. Continue reading

Thermal Optimization for Energy Efficiency

Where I live in New Hampshire, in the northeastern United States, it is mid-autumn. The leaves are especially brilliant this year and fall temperatures have been warm with just a few nights below freezing. We had to turn on the heat recently and will be paying for the additional fuel usage soon. These chilly nights and warm days have me thinking about honeycomb window blinds and the lowest temperature we can all tolerate indoors in an effort to save energy when it truly gets cold. It strikes me that the heating decisions we make at home to optimize for energy efficiency are very similar to the ones engineers working on all kinds of things make everyday. Continue reading

AirLoom Energy On Track to Replace Wind Turbine Using Simulation

AirLoom Energy (from left to right): Mookwon Seo (engineer), Olivia Lim (engineer), Robert Lumley (president), Blossom Ko (operations). Additional staff (not pictured): Lance Goode (systems administrator), Josh Hamblin (engineer)

AirLoom Energy (from left to right): Mookwon Seo (engineer), Olivia Lim (engineer), Robert Lumley (president), Blossom Ko (operations). Additional staff (not pictured): Lance Goode (systems administrator), Josh Hamblin (engineer)

Breakthrough energy innovation comes in many forms, as we at AirLoom Energy are proving with our revolutionary design of an alternative to the wind turbine. AirLoom Energy is a startup wind energy company housed at the incubator program (WTBC) at the University of Wyoming, home of the Cowboys football team and big, BIG wind. We were recently awarded an SBIR grant from the National Science Foundation to support the prototype development of our novel AirLoom wind power generation technology, a milestone that can be credited in large part to support received through the ANSYS Startup program. Continue reading