Advancing Solid Rocket Propulsion System Design

concordeIt has now been over a decade since commercial travelers were able to experience supersonic flight on the Concorde aircraft. News items will periodically surface about the possibility of travel across the Atlantic in an hour or less, but these are usually media hype based on a recently filed patent or publication. The reality is that we are still many years away from a commercial aircraft that can match the speed of Concorde. And, this is a plane that first flew close to 50 years ago. Who knows how far away we are from the transportation technologies we were supposed to have on the recently passed Back to the Future Day, October 21st 2015. Continue reading

What Happens in the Cloud, Stays in the Cloud… AWS re:Invent

A quick look back at AWS re:Invent 2015

image002Credit for the title belongs to Pam Murphy, COO of Infor, who delivered this gem in the keynote session of the Global Partner Summit at Amazon Web Services (AWS) re:Invent 2015 conference, held in Las Vegas from Oct. 6-9. If you had any doubts that cloud computing is gaining steam (apologies for mixing water vapor metaphors) attending this event would have ended them. Over 18,000 attendees were at the main conference and about 4,000 attended the Partner Summit (ANSYS is an AWS Advanced Technology Partner). Continue reading

Simulation Speeds Innovation for Pump and Turbine Company

Gilkes Cooling pumps

Cooling pumps Courtesy Gilkes

On November 3rd, as part of the ANSYS Convergence webinar series, we will presenting an interesting story on how simulation has enabled a well-established company to move rapidly along the innovation curve. That company is Gilbert, Gilkes & Gordon Ltd., aka Gilkes. The company has successfully operated for over 150 years in the Lakes District of the United Kingdom. Their main products are small hydropower systems for generating electricity, and pumps for circulating cooling water in diesel engines. Continue reading

So You Want to Design Medical Devices

Healthcare is often cited as one of the leading applications for the Internet of Things (IoT). Looking around the Web, it is clear that leading high tech companies like Qualcomm, Intel, Cisco, Juniper all have initiatives on healthcare. A notable example is Google, which has already created a prototype contact lens to help measure glucose levels in diabetic patients.

“Better patient outcome” is a goal that all of us can get behind!

But even the most successful high-tech companies are quickly discovering that designing medical devices is different than designing consumer electronics. Designing for the healthcare industry requires extra rigor, insight, and collaboration with healthcare industry experts. Continue reading

Brain Simulation

While reading “Out of Our Minds” by Sir Ken Robinson —published in 2003 — one prediction that blew my mind was the possibilities of backing up our brain information. It was not convincing, even considering some forty odd years into the future. I did a Google Search to discover that actually the book quoted a prediction by renowned futurologist Dr. Ian Pearson.

“By about 2040, there will be a backup of our brains in a computer somewhere, so that when you die it won’t be a major career problem.” – Ian Pearson

Continue reading

5 Improved Workflows for Rotating Machinery Design and Analysis

There were a number of new and exciting workflow enhancements included in ANSYS 16.0 for those who design and analyze rotating machinery to make data transfers and simulation setup easier. Here are the top five enhancements:

1 – BladeGen to BladeEditor

BladeGen Continue reading

3 Things High-Tech Companies Should Consider When Entering the Healthcare Market

Head_SARBecause of the growing emphasis on the Internet of Things (IoT), a large number of analysts see the healthcare market as one of the biggest opportunities for high-tech. As a specialist in the healthcare business, I certainly agree that the next major step for healthcare requires treating pathologies in the very early stages, what IoT technology will enable. Early treatments are usually easier, cheaper and maximize the chance for a complete cure. This is called P4 medicine — preventive, participatory, predictive, personalized. But this requires continuously measuring many parameters within our bodies. If we don’t want to live with our physician, we need to wear the necessary measurement equipment and this is where the new high-tech industry plays a role. Continue reading

Modelling Shape-memory Alloy Stents with ANSYS Mechanical

Earlier this year, I worked on the modelling and finite element analysis of biomedical stents teaming up with colleagues Jorge Dopico (ANSYS Iberia) and Mark Robinson (ANSYS UK). In particular, the focus was the development of a model that would allow for a better understanding of the “in vivo” performance of stents made of innovative shape-memory alloy materials. Continue reading

Moore’s Law Might Be Slowing Down, But Not Software Scalability

Based on a recent announcement that ANSYS and Cray has smashed supercomputing records, an editor of a well-known magazine followed up on and asked me whether this achievement might help to compensate the slowdown of Moore’s Law. Although I was able to briefly respond, it was also end of the day and while driving home the question stayed in my head and was the origin of this blog. Continue reading

Solving the Impossible Electromagnetic Simulation with HPC

solving impossible electromagnetic simulation

I was speaking with an ANSYS HFSS developer about a year ago when he mentioned they were starting to see customers who wanted to run 3-D full wave electromagnetic field simulations that would need more than a terabyte of computer system memory, something this developer hadn’t been able to do before. Continue reading