Speeding Innovation – Advancements in High Tech Simulation with ANSYS 17.0

It isn’t too much of a stretch to say that Moore’s Law can be credited with many of our technological advances. Since the 1960s, Gordon Moore’s prediction that computing performance will double every 12 to 18 months has been accepted as gospel. And the proof is all around us. The conveniences of the modern world — ubiquitous communication through Internet enabled phones, electronic payments, and digital streaming, to name just a few examples — are all due to continuous engineering innovations delivered through cheaper, faster, more precise electronics. Continue reading

10x Faster Transient Electromagnetic Field Simulation

“I feel the need. The need for speed!” is a famous line from the movie Top Gun. Designers of electric motors, power transformers, planar transformers, and actuators — or anyone that regularly runs transient electromagnetic field simulations — can relate to that phrase. Transient electromagnetic field simulation is a powerful, accurate method to solve EM problems in the time domain, but the process is painfully slow even with today’s fastest computers. Thus, EM transient simulations often are relegated to the verification stage rather than the design stage of the device. With ANSYS Maxwell in ANSYS 17.0, you can now channel your inner Tom Cruise — ANSYS delivers on your need for speed! Continue reading

Incredible High Frequency Design Accuracy with ANSYS HFSS and Modelithics Models

In the five short years that I have been in the RF and Microwave design industry, I have seen the demand (and need) for quick and accurate electronic design simulations escalate rapidly. I have also had the opportunity to interact with many design engineers during this time who have come to the same conclusion – they need more accuracy. Whereas ideal component simulation models or s-parameter files were once acceptable, this is much less often the case now. Parasitics have a considerable effect on component response, and even more so as design frequency increases. Labor and material costs multiply with each design iteration, so it is very important to limit these cycles and achieve a successful design early on. Continue reading

ANSYS Chip Package System Analysis Ready for the “Next Big Thing” in Mobile Design

Delivering a truly innovative product for the mobile revolution requires optimization at every level of design for power, performance, thermal and structural integrity. The success of today’s electronic products are tied to the success of their entire system, including all components from antenna to board, and from chip to chassis. Designing a smart watch, for example, requires multiple iterations of chip, package, board, antenna, and cooling strategy to arrive at a final optimized product. Continue reading

Designing without Borders – DesignCon 2016

designcon demosProduct development of today’s complex mobile and IoT devices requires the cooperation of independent design teams working at the chip, package, and system level. However, several roadblocks in the electronics design flow make this cooperation very difficult, impacting time, effort, and ultimately the cost required to deliver a successful product to market. Continue reading

Santa Struggles with Radio Frequency Interference – Could Hinder Gift Delivery

Santa Calling about Radio Frequency InterferenceWhen my caller ID lit up showing an incoming call from “The North Pole” I scratched my head wondering who it could be. Only one person I know of lives at The North Pole. Yup, it was Santa. In the past, Santa has worked with ANSYS engineers to improve the structural and aerodynamic properties of his sleigh. This year, Santa had another concern that he was calling me about. It seems that on some test flights in preparation for this year’s Christmas Eve deliveries, Santa noticed that the sleigh’s on-board GPS radio that he and his elves rely on for accurate tracking information wasn’t always working properly. Santa noticed that the problem usually occurred when he flew near cell phone base station towers. We assured Santa that we could help and we set about modeling the installed radio frequency (RF) systems on his sleigh in order to understand what was happening. Continue reading

So You Want to Design Medical Devices

Healthcare is often cited as one of the leading applications for the Internet of Things (IoT). Looking around the Web, it is clear that leading high tech companies like Qualcomm, Intel, Cisco, Juniper all have initiatives on healthcare. A notable example is Google, which has already created a prototype contact lens to help measure glucose levels in diabetic patients.

“Better patient outcome” is a goal that all of us can get behind!

But even the most successful high-tech companies are quickly discovering that designing medical devices is different than designing consumer electronics. Designing for the healthcare industry requires extra rigor, insight, and collaboration with healthcare industry experts. Continue reading

I Can’t Hear You! Radio Frequency Interference (RFI) in Sports Arenas

During a recent NFL game, the visiting team complained about picking up the home team’s radio broadcast on their coach-to-coach headsets preventing the coaches from communicating with one another. The home team indicated that there were also issues communicating with the quarterback using their radio system.

RF interference stadiumsRadio frequency interference problems in major sports stadiums are unfortunately very common given the large number of radios present in a relatively small area. A typical sports stadium includes systems transmitting and receiving signals for game day operations, referee and commercial coordination, coach and player communication, a variety of cell phone networks, Wi-Fi services, and a number of other wireless services. Continue reading

Making Our Highways Safer with Automotive Radar

image002Automotive radar is a key technology in delivering active safety systems that play a major role in reducing traffic fatalities. Active safety systems include adaptive cruise control and collision warning systems with automatic steering and braking intervention, lane departure warning and electronic stability control. In a collision warning system, the automotive radar consisting of a 77 GHz transmitter emits signals that are reflected from objects ahead, at the side and to the rear of the vehicle and are captured by multiple receivers integrated throughout the vehicle. The radar system can detect and track objects and trigger a driver warning of an imminent collision and initiate electronic stability control intervention.  Continue reading

Bigger, Faster Antenna and Antenna Platform Simulations!

The recent ANSYS acquisition of Delcross Technologies is a very exciting addition to our electronics product portfolio! The Internet of Things (IoT), aerospace and defense electronics, including unmanned aerial vehicles (UAVs), automotive radar and autonomous vehicles all have increasing use of multiple antennas and wireless services.

logo_delcross_2ANSYS HFSS delivers capabilities that enable antennas to be placed on complex structures followed by efficient simulation using component library models with encryption, assembly modeling with mesh assembly, and advances in our hybrid solver technology. The next logical step in HFSS development is to perform even larger platform-level simulations. To solve larger problems requires leveraging asymptotic methods of which one of the most powerful and effective method is the Shooting and Bouncing Ray (SBR) technique. The Delcross implementation of the SBR technique and its integration with high-level system analysis is the most advanced in the world and is now a part of the ANSYS product portfolio! ANSYS has fast-forwarded its development plan and will now offer our customers the ability to solve massively large antenna simulations; installed antenna performance and system RF co-site problems. Continue reading