Thermo-Mechanical Analysis Methods for Printed Circuit Boards: Part 2

In part one of this series, we discussed modeling approaches for the complex geometry found in printed circuit boards. Now, we’ll move on to discussing methods for characterizing the thermal properties of integrated circuit (IC) packages.

Analysis of IC packages is critical at many levels of the design process, including package level thermal design, board level modeling including heat sink designs and package viability, as well as system level flow and thermal characterization. Much like a PCB, IC packages are geometrically complex, with disparate length scales that are challenging to explicitly capture in an analysis.

Typical IC Packages  Continue reading

Efficiency Maps for Electric Motors Made Easy

Simulating electric motors saves time, minimizes the number of needed prototypes and enables innovation as it is possible to virtually test a wide range of possible designs. ANSYS can simulate electric motors in many ways: evaluate magnetic performance, predict thermal behavior, limit noise vibration effects, understand how to the machine interacts with the power electronics.

With the release of ANSYS 19, we are excited to introduce a new capability within ANSYS Maxwell specifically dedicated for electrical machines that are used in a wide range of operating conditions (speed, torque, current, etc). Think about an electric or hybrid car: the driver needs power for a variety of purposes (high torque when accelerating, high speed when cruising). Machine designers face big challenges to design and control such motors: how to optimize the performance when the motor is going to be used in a variety of conditions?

Continue reading

Improve Thermal Reliability with ANSYS Icepak

Electronics is at the heart of many exciting products like smartphones, tablets, and TVs, and it plays a key role in various industries from semiconductor, automotive, agriculture, aerospace, entertainment to healthcare. Modern electronic devices are faster, smaller, and denser than ever before. Since we pack millions of transistors within a small area, these devices tend to generate a lot of heat. Heat-induced mechanical effects, such as delamination, and breakage of solder joints connecting the chips to their printed circuit boards (PCBs), can cause system-wide reliability problems. It’s critical to simulate the electro-thermal and structural properties of electronic designs before you build the hardware. Simulation tools from ANSYS can solve these challenges and improve the reliability and performance of electronic products. Continue reading

ANSYS HFSS 19 – New Capability, New Look, More Power

ANSYS HFSS 19 ElectromagneticsExciting new capabilities have just been released in ANSYS HFSS 19. With this release, we are delivering new features such as Radar Cross Section Analysis (RCS), a dynamic new user interface, more computational power and new packaging that will deliver an incredible amount of value to our current and future users. In this blog, I provide a brief introduction to the new HFSS but please consider joining my colleague Matt Commens, HFSS Lead Product Manager, on February 7 for the HFSS Product Update Web Seminar to find out even more details. Continue reading

Simulation Electrifies Motor Design

Sales of electric vehicles (EVs) are skyrocketing. Driven by technological improvements in powertrains and batteries, environmental regulation, and shifting consumer demand for greener vehicles, global sales of EVs rose by 40 percent last year. And the electrification revolution is only getting started. This growth trend will continue as the cost of owning electric vehicles declines and approaches the cost of internal combustion engine (ICE) vehicles sometime within the next decade.

electric-vehicles-motor

Continue reading

Cloud Computing Speeds Antenna Design

In a previous blog, I noted that born in the cloud companies can be a boon to tech startups looking to optimize precious resources. In this post, I offer a spectacular case in point.

Optisys had big goals and big compute needs. Designing its next-gen antenna, the Utah-based startup sought order-of-magnitude reductions in size, weight and lead time, and a cost-effective solution for running large, concurrent RF electronics simulations. Establishing an in-house IT function wasn’t an option: Optisys (like many startups) had little appetite or budget for investing outside its core business. Instead, it adopted Rescale’s cloud-based platform to satisfy its simulation needs. Continue reading

Investigating Placement of Antennas Inside an Aircraft Fuselage

You may be surprised to learn that a standard passenger jet can have 30 to 50 antennas protruding from the aircraft’s external surface, producing drag forces that can drastically reduce fuel efficiency at a time when airlines are trying to reduce energy consumption. Most antenna designs are engineered for safety purposes, such as air traffic control, traffic collision avoidance, instrument landing systems and distance measuring equipment. Increasingly, antennas are being added to meet passenger demand for more and faster Wi-Fi access, in-flight TV and cellphone applications.

aircraft antennas

Antennas are mounted on the exterior of today’s airliners

Continue reading

Ensuring Signal Integrity Throughout a Channel

Electronic devices — with well-designed signal integrity (SI) — have transformed the way we communicate, work, learn and entertain. Around the globe, we find smart phones, fiber-optic and wireless networks, pocket-size computers, LED screen displays that mimic paper and unmanned aerial vehicles (UAVs) that deliver packages. Automobiles are filled with electronics that control engine functions, keep wheels from skidding, avoid accidents, direct our travel routes and, now, drive themselves. Aircraft are equipped with radar, fly-by-wire systems and airborne communications. And the innovations keep coming…

deep channel analysis for signal integrity

Continue reading

Enhancing the Accuracy of Full-body Scanners for Improved Airport Security

If you’ve traveled by plane in recent years, you know the airport security drill: Put all your possessions through the X-ray detector, empty your pockets and step into one of the full-body scanners — or millimeter-wave holographic scanner, to use its official name. After you raise your hands above your head, the scanner sends out millimeter waves (mm-waves) that penetrate your clothing and bounce off your skin — or any other object you might be trying to conceal under your clothing, like a weapon of some sort. (The mm-wave radiation is 10,000 times less powerful than a single cellphone call, so you need not be concerned about any health effects.) An antenna array in the sweeping scanner device detects the reflected mm-waves and reconstructs an image of your body.

Airport mm-wave scanner

Continue reading

Ensuring EMI/EMC Compliance with Electronics Simulation

Today we live in a hyper-connected world, surrounded by smart products. If industry forecasts are correct, by 2020 — just 2 short years from now — there will be over 28 billion internet-connected devices. Beyond smart phones and autonomous vehicles, smart cities, smart factories, and smart homes are also quickly emerging as promising opportunities that could help improve how we live, work and play.

While these new capabilities will be a delight to us as consumers, they are a nightmare for engineers and product designers. With hundreds of sensors, microprocessors, and wired and wireless communication components, engineers face immense challenges in ensuring reliability and performance. In the complex web of electronic circuitry, something, somewhere that is left unaddressed could lead to failure. One of the big challenges confronting product designers is electromagnetic interference, or EMI.

communication channelFull-wave model of communications channel
Continue reading