Thermo-Mechanical Analysis Methods for Printed Circuit Boards: Part 1

As electronic devices become smaller and more ubiquitous, the printed circuit boards and components that drive them face increasing power densities and evermore complexity. To ensure product reliability and performance, accurate and detailed analysis methodologies are necessary. In a three-part series, Mike Bak and I will discuss modeling approaches for the thermo-mechanical analysis of printed circuit boards and their components. In part one of this series, I will cover modeling approaches for the PCB itself.

A typical PCB will have multiple layers, each one having its own distribution of FR-4 and copper traces and vias. Take the board layout shown in Figure 1 as an example, which has over 16,000 traces and vias across 7 layers. The complex board geometry leads to spatially varying material properties (i.e. modulus of elasticity, density, thermal conductivity, etc.) that must be accurately specified by the analyst for any type of simulation.

Thermo-mechanical Analysis of a printed circuit board

Figure 1: Typical PCB Layout Geometry

So, what are some ways that we can model this type of geometry? I’ve outlined below some common approaches: Continue reading

Pervasive Simulation for Electronics in ANSYS Advantage

ansys advantage electronicsElectronics are everywhere. Amazing innovations such as driver assistance systems (ADAS), IoT, 5G communications, hybrid propulsion and others all depend on electronics. Engineers and designers in almost every industry, must account for electromagnetic fields to design, optimize and deliver products quickly to market.

As radio frequency (RF) and wireless communications components are integrated into compact packages to meet smaller footprint requirements while improving power efficiency, electromagnetic field simulation is the only way to make these trade-offs.  Simulation enables innovative ideas, that can push products beyond their traditional limits, to be tested and realized without the burden of prototype costs and time.

The latest issue of ANSYS Advantage features articles from industry leaders who make the most of electromagnetic field simulation to develop next-generation products and deliver them to market quickly.

Continue reading

Interference-Free Design of Electronic Devices

Have you ever relaxed on the patio on a beautiful autumn day while using your mobile phone to talk to a friend, stream some relaxing music over the phone’s WiFi connection and maybe use the built-in GPS location capability while you map out your next family road trip, all at the same time?

Just think about how amazing it is that you can do all of that — and more — with a device that you hold in the palm of your hand. Your mobile phone has more computing power than the computers that put man on the moon, and more wireless connectivity than we would have thought possible less than a generation ago!

cell phone complex RF environment interference-free design Continue reading

High-Capacity Power Signoff Using Big Data

As designs increase in complexity to cater to the insatiable need for more compute power spurred by different AI applications ranging from data centers to self-driving cars, designers are constantly faced with the challenge of meeting the elusive PPA (Power Performance and Area) targets.

PPA over-design has repercussions resulting in increased product cost as well as potential missed schedules with no guarantee of product success. Advanced SoCs pack more functionality and performance which result in higher power density. Traditional approaches of uniformly over-designing the power grid which has worked in the past is no longer an option with routing resources becoming severely constrained. To add to these woes, there are hundreds of combinations of PVT corners to solve for along with the increasing number of applications.  Continue reading

European Microwave Week on the Horizon

European Microwave Week 2017 is almost upon us. The 6-day event provides access to the very latest products, research and initiatives in the microwave sector. It also offers attendees the opportunity for face-to-face interaction with those driving the future of microwave technology. Our ANSYS experts have been attending this conference for a number of years, and I’m proud to say we’ll be there again this year.

From October 10-12, you can stop by our Stand 103 to get the most up-to-date information on our solutions for RF, microwave and communications systems. I’m personally honored to be presenting two papers this year that I hope you’ll attend. Continue reading

Antenna-to-Environment Interaction Insights with Visual Ray Tracing

When preparing for a business or personal trip, most of us want to check our travel routes in advance. There are many route-planning tools on the web today, and they help us to anticipate route difficulties such as heavy traffic, changes in street names, road sizes, accident locations, and many more. Some of these map applications even tell us what time we need to leave our starting location to reach our destination on time. Many of us end up “virtually” driving the route several times before we take the actual drive. Those virtual drives help us get from point A to point B in the shortest time possible, without unpleasant surprises.

Antenna system developers often face a similar challenge: We may have a great antenna design to get an RF signal from point A to point B in isolation, but the scattering environment around the antenna directly impacts the antenna’s ability to get the job done. So how do we anticipate the different routes that the signal might be forced to take to reach its destination? You guessed it—modeling and simulation of the antenna’s interaction with that environment. Continue reading

AESE: Simulation for a More Connected World

Today, after a video call with my kids at home, I feel more relaxed. Usually on long distance business travel, we are always concerned about the family at home. A few years ago long distance voice calls were not only costly but also of poor voice quality. Now, equipped with mobile phones, we can make high-quality audio/video calls and exchange text messages with people around the globe, at little or no cost.

It’s amazing to see the way communication technology has grown over the years. Technologies that seemed like fiction a few years ago, are now becoming reality. These include virtual reality, 3-D hologram and printing, language translation, and mobile streaming audio and video.  Continue reading

Wireless Charging Design in Wearables Using Simulation

Working for ANSYS gives me incredible opportunities to work with innovative companies and learn about the latest technologies that are being developed to improve our lives. One of the intriguing companies I have had the pleasure to work with is RF2ANTENNA. RF2ANTENNA works on developing innovative and easy-to-integrate products for specific applications in wireless communications and wireless charging, with the goal of improving the efficiency of IoT devices with affordable solutions. Their core competency is in providing solutions to radiation problems in mobile products. The ANSYS Startup Program has given them the opportunity to take their work to the next level. Continue reading

Amphenol® RF HFSS 3D Components

Amphenol® RF engineers spend countless hours working with our customers to ensure our connectors are as effectively integrated as possible to their products. With competitive pressure and new product development cycles shrinking ever more, efficient collaboration with customers and partners for successful product integration has never been more important. A critical challenge in high performance RF connector design is to understand the impact of the connector’s launch to the device. Being able to validate our connector design on the customer’s product as early and as confidently as possible in the design stage is critical. To help address this need, Amphenol® RF is now making available, for download, encrypted ANSYS HFSS 3D models. Continue reading

ANSYS and Synopsys Announcement at DAC 2017 – #54DAC

ansys synopsys partnership semiconductors DACSemiconductors touch every aspect of our lives — from the computers that we work on to the automobiles we drive to the medical devices that keep us healthy. As these amazing chips become smaller and more packed with functionality (the latest NVIDIA graphics chip has 21 billion transistors!), designing and producing them becomes far more complicated. Yet increased demand for smaller, more powerful integrated circuits is increasing so companies can create the products of the future. Continue reading