Pervasive Turbomachinery Simulation: ASME Turbo Expo Preview

I ran across a now-classic paper about turbomachinery simulation published in 1989 by Brent Miller and his colleagues at NASA’s Lewis Research Center. They were excited by the potential of simulation to speed up and improve aerospace engine development. They set forth a vision for a computer-driven system that could simulate, analyze and optimize the performance, durability, reliability and weight of a concept before building any hardware:


“What if we had the capability to ‘compute’ an engine … any parameter of interest could be computed with satisfactory engineering accuracy, in a reasonable time, for a reasonable cost. … Engines could go directly from design to production … Most of the ‘testing’ would be done in the ‘numerical test cell’ with savings in engine development time and cost estimated to be in the range of 25 to 40 percent.”


Thirty years later, I think we can all agree that we have realized their vision and then some.

Video of ANSYS CFX blade row methods for speed flutter analysisBlade flutter analysis in ANSYS CFX

Today, there is another, even more exciting future in the works — a future that extends simulation beyond the external aerodynamics and flow inside the engine and beyond the research and development process. Engineering simulation is pervasive across the entire product lifecycle. Continue reading

Optimizing Tunnel Ventilation Fan Blades for Energy Efficiency Using the Adjoint Solver

Because fossil fuel resources around the globe are finite, an overriding engineering design challenge is energy efficiency and sustainability. Today I’ll use tunnel ventilation fans as an example to illustrate how CFD simulation and advancements in our Adjoint Solver in ANSYS 18 can optimize fan blades performance.

According to a report by Mosen Ltd., a leader in this industry, the “greening” of tunnel ventilation is still in its infancy. The application consumes substantial power, sometimes several megawatts; in addition, governmental regulations often require tunnels beyond a certain length (for example, 300 meters) to have ventilation systems that disperse exhaust and control smoke in case of fire. As a result, tunnels need more ventilation capacity than what would be needed for day-to-day air quality. Continue reading

Learn How Simulation Speeds Turbomachinery Development: TurboExpo Preview

Turbine blades of turbo jet engine turboexpo

I was reminded just how complicated and expensive it is to develop a jet engine when I came across a video describing GE’s recent $26 million Cdn investment to upgrade its Winnipeg test facility. That is on top of even bigger investments by Rolls-Royce ($50 million) and GE ($40 million) and in recent years. Physical testing is not only expensive, it is time consuming and can lengthen design cycles.

Meanwhile, it has become easier than ever to simulate engine performance prior to any physical testing. Improved techniques like harmonic analysis, turbomachinery-specific workflows and better validation coupled with faster, more capable high performance & cloud computing are quickly expanding simulation so engineers can be confident in their designs before the first prototype is ever built. While physical testing is not going away anytime soon, ANSYS is working on digital prototyping with leading turbomachinery companies and helping them to cut it down to size. Continue reading

Fast, Accurate and Reliable Turbomachinery Simulation with Harmonic Analysis – Meet me at the Turbo Expo to learn more!

Transient blade row simulations in turbomachinery are needed either to improve the aerodynamic performance predictions or because the flow interaction we are trying to resolve and predict is unsteady in nature such as aeromechanical, aerothermodynamic or aeroacoustic interactions. Because the blade pitch is not similar between the rows of turbine or compressor, a transient blade row simulation will usually require the modeling of the full wheel (or full geometry). This constraint renders these simulations not practical and in many cases prohibitive as analysis or design tools. Continue reading

CFD Time Transformation Delivers Accurate Turbomachinery Unsteady Transient Flows Faster Than Conventional Methods

Unsteady methods are becoming increasingly important in turbomachinery design and optimization because they model transient flows and performance more realistically. Unfortunately, using time-accurate CFD simulations to understand these unsteady flows in compressor stages can be computationally expensive. In recent years, ANSYS has been working on methods for modelling the transient flows in turbomachinery stages that require as few as single-blade passages per row but with equivalent accuracy. As a result, engineers can drastically reduce computational time and memory resources by up to 10X. Continue reading

The Evolution of Simulation and Rotating Machinery

It seems not all that long ago that I first attended the ASME International Gas Turbine Institute (IGTI) conference in Toronto. It was just a short drive from my office in Waterloo, Ontario. This year I took a much longer trip to Seoul South Korea to attend the ASME Turbo Expo. As I am already engaged in preparations for the 2017 edition that will be held in Charlotte, NC, I am reminded that much has changed in how rotating machinery is designed and operated. No doubt more evolution will be evident in the 2017 conference. One difference is that the conference will be held in conjunction with the ASME Power and Energy conference. I think that this makes a lot of sense, given the continued important role of turbomachinery in power and energy production and transmission. Continue reading

AirLoom Energy On Track to Replace Wind Turbine Using Simulation

AirLoom Energy (from left to right): Mookwon Seo (engineer), Olivia Lim (engineer), Robert Lumley (president), Blossom Ko (operations). Additional staff (not pictured): Lance Goode (systems administrator), Josh Hamblin (engineer)

AirLoom Energy (from left to right): Mookwon Seo (engineer), Olivia Lim (engineer), Robert Lumley (president), Blossom Ko (operations). Additional staff (not pictured): Lance Goode (systems administrator), Josh Hamblin (engineer)

Breakthrough energy innovation comes in many forms, as we at AirLoom Energy are proving with our revolutionary design of an alternative to the wind turbine. AirLoom Energy is a startup wind energy company housed at the incubator program (WTBC) at the University of Wyoming, home of the Cowboys football team and big, BIG wind. We were recently awarded an SBIR grant from the National Science Foundation to support the prototype development of our novel AirLoom wind power generation technology, a milestone that can be credited in large part to support received through the ANSYS Startup program. Continue reading

10 Reasons to be Excited About ANSYS 17.0 for Turbomachinery Simulation

For the past few weeks, the ANSYS blog has published many posts and ANSYS has held a number of webinars describing the advantages that ANSYS 17.0 provides for turbomachinery simulation. In the following, I will review these events and provide my summary of 10 (out of many more) exciting developments:

  1. A focus on HPC delivers significant speedups and ability to handle larger models, for both CFD and mechanical simulation.
  2. A new mechanical model simulates journal bearings, additionally providing important inputs of stiffness and damping for rotordynamics simulation.
  3. Fracture analysis is faster and easier with arbitrary crack surface definition and post-processing.

Continue reading

Coupling ANSYS and ADT Tools Speeds Turbomachinery Design

Engineers like to have lots of tools at their disposal. In my home workshop I have a lot of them, but it seems that there is always something extra that I could use for one particular job or another. Having the right tool for that job, and one of high quality that will not break in the middle of a project, is valuable as well. And organization is a good thing too, because if you can’t find tools when you need them and are unable to use them in conjunction with other tools, then the job does not progress very well. Having my toolkit in order is beneficial when the unexpected happens or if I need to complete a job in short order. Continue reading

Pump Simulation Advances with ANSYS 17.0

Pumps are pervasive and play an important role across many industries and in our daily lives. They have been around for a long time, when you consider that the Archimedes screw dates back over two thousand years. They come in a wide range of sizes and styles, from heart pumps that measure only millimeters in size to large pump-turbines that measure meters in diameter. Some pumps are custom- engineered and very high-tech, such as those used for liquid rocket propulsion, nuclear submarines or power plant applications. Many others are regarded as a commodity items, although that view is changing, as we shall see. Some estimate that pumps consume as much as 10% of the electricity generated worldwide. Continue reading