Discovery Live Paves the Way for Rapid Simulation Results

I was recently presented with a unique opportunity to compare the results of full ANSYS CFD simulations with the results obtained using the new ANSYS Discovery Live product, which provides results instantly upon changing the geometry without interrupting a run. I was very pleased and surprised by the speed and accuracy of Discovery Live in this comparison test.

I work for Astec, Inc., the subsidiary of Astec Industries that builds asphalt plants. Roadtec Inc., another Astec Industries company, builds asphalt pavers, reclaimers and material transfer vehicles (MTVs). An MTV helps to accomplish non-stop, non-contact paving by offering a continuous supply of Hot Mix to the paver. By separating dump trucks from the paver this way, contractors are able to make a smoother finished road.

Continue reading

ANSYS AIM 18.2 Extends Fluid Flow Simulation to More Real-world Applications

In ANSYS AIM 18.2, several improvements have been introduced to the capabilities for simulating fluids. In this blog, I’ll highlight two of what I think are the most significant.

First: time-dependent fluid flow (including solid-fluid heat transfer). Time-dependent fluid flow enables the modelling of both applied physics conditions that change over time, and unsteady flow phenomena, for example varying inlet velocity and/or temperature in an internal pipe flow simulation; or vortex shedding from external flow around a cylinder, such as a chimney.

Second: particle injection (also known as discrete phase modelling, or DPM for short), where the injected particle could be a droplet, for example, a fire sprinkler system spraying water into air, or raindrops, but it could also be a bubble of gas into a fluid. Continue reading

The Need for Speed Drives NASCAR’s Richard Childress Racing to the Cloud

In the world of stock-car racing, finding even the smallest competitive advantage is the difference between winning and losing.

That’s why at Richard Childress Racing, we design and build our race cars end-to-end. We engineer and machine our own chassis and suspension components, we design and fabricate our own bodies, and we test and build our own engines. Everything is built from the ground up at RCR.

Continue reading

Improving Smoked Food with Simulation

Smoking meat (and other food) in a barbecue smoker doesn’t sound complicated, but there are more factors at work in producing delicious food than you would expect. Barbecue enthusiast Travis Jacobs, president of Jacobs Analytics, was aware that in windy conditions the air flow through the bottom inlets and the top outlet vents of a smoker can be variable, leading to internal temperature gradients and swirling air that removes smoke and makes a less savory product. He wanted to make a smoker that could smoke food to perfection in any conditions. Unlike most of us non-engineer weekend barbecuers, he turned to computational fluid dynamics (CFD) simulations to solve this problem.

Continue reading

Brighter, Energy-efficient LED Headlights through CFD

LEDs are increasingly used in automobile headlights because of their small size and reduced energy consumption. But, though they are much more energy efficient than traditional headlights, most of the energy required is converted to heat rather than light — 70 percent, in fact. This presents a challenge to engineers and designers because, since they are semiconductor-based, the diode junction of LEDs must be kept below 120 C. Maintaining temperature below this limit typically involves cooling airflow from an electric fan combined with heat sink fins.

Continue reading

The EnSight CFD Simulation Post-Processing Story: Like a Multi-Stage Rocket

EnSight, the leading post-processor for Computational Fluid Dynamics (CFD) data is now part of ANSYS. In the two decades since its launch, EnSight has taken off like a multistage rocket. Here is the story.

I grew up in that magical era when NASA used multi-stage rockets to carry Apollo astronauts to the moon and back. As a toddler I learned to count backwards from 10, 9, 8, 7, 6 … because that’s what I heard Mission Control say. I dreamt of being an astronaut, studied aerospace engineering and started my career at NASA’s Johnson Space Center in Houston, Texas. I met my lovely wife there, blocks from the NASA gates. Her parents still live next door to Buzz Aldrin’s Apollo era house. I used to store my lunch in the Mission Control fridge while working on my space shuttle aerodynamic simulations in the support room next door. So maybe it’s natural for me to think in rocket terms. Continue reading

Simulation Used to Spur Design Development for Nuclear Power

Nuclear power is a key player in the future of clean energy, and multiple companies are pursuing new technologies to maximize nuclear’s contribution to the clean energy space. Founded in 2011 and based in Cambridge, MA, Transatomic Power is an advanced nuclear technology startup developing and commercializing a molten salt reactor (MSR), or a nuclear reactor whose fuel is in liquid, rather than solid, form. This technology, originally developed at the Oak Ridge National Laboratory (ORNL) in the 1960’s, offers multiple safety and cost benefits over traditional nuclear reactors, in which the fuel is in the form of solid pellets cooled by water.

Tranatomic’s MSR design builds on the original work at ORNL and adds a few innovative new features that reduce the reactor’s size and, as a result, it’s cost – a huge factor in building new nuclear power plants. Though the development process is a long one, the world needs a larger capacity for clean energy generation, and it’s this ultimate goal that drives the Transatomic team forward. Continue reading

CFD Simulation of HVAC Systems on Trains Makes Rail Travel More Comfortable

Every time I travel in Europe, I enjoy riding the fast, comfortable trains. Riding from city center to city center without long security lines and tight uncomfortable airplane seats (worse for me because I’m tall!) can even make travel pleasant. But, I’ve always taken that comfort for granted. Were trains not always that way? Then, I found out about the challenges that Siemens engineers face as they design passenger coaches. Now I have huge respect for those engineers. Read on to find out how CFD is making their lives easier while giving me the comfort I love.

Siemens Ice 4 Train HVAC Systems on Trains

Continue reading

Optimizing Critical Components to Fit into Confined Spaces Using the Adjoint Solver

Optimizing components that must fit into tight spaces can be a daunting task, even for the most experienced designer. Consider the HVAC system of a car, which supplies air to the vehicle’s cabin. Today, air conditioning is deemed standard equipment even in entry-level automobiles, so manufacturers must build it in. Its critical components – manifold ductwork — are located under the hood amid the well-planned jumble of engine, radiator, battery, transmission, and auxiliary structures. Not much room in there … and that’s just one of the complications. Continue reading

Optimizing Tunnel Ventilation Fan Blades for Energy Efficiency Using the Adjoint Solver

Because fossil fuel resources around the globe are finite, an overriding engineering design challenge is energy efficiency and sustainability. Today I’ll use tunnel ventilation fans as an example to illustrate how CFD simulation and advancements in our Adjoint Solver in ANSYS 18 can optimize fan blades performance.

According to a report by Mosen Ltd., a leader in this industry, the “greening” of tunnel ventilation is still in its infancy. The application consumes substantial power, sometimes several megawatts; in addition, governmental regulations often require tunnels beyond a certain length (for example, 300 meters) to have ventilation systems that disperse exhaust and control smoke in case of fire. As a result, tunnels need more ventilation capacity than what would be needed for day-to-day air quality. Continue reading