The (Technical) Kindness of ANSYS Fluent aaS, a Matlab Example

coding matlab ansys fluentMy friend, a fellow Romanian, just told me a funny story. She just relocated to the U.S. and was asking her dentist “When will I have the root channel treatment?”. The dentist kindly replied “Did you mean root canal, my dear?” 

Human kindness is a beautiful thing. As a software developer, I often wish that computer programs would be equally technically kind. Most of them are not. Many times, when a user mistypes a command, applications crash. Continue reading

Better Particle Erosion Fluid Dynamics Modeling in ANSYS Fluent 18

ANSYS Fluent 18 has advanced erosion fluid dynamics modeling by adding three industry-standard models to the previous default model.

Erosion wear is the loss of material due to repeated impact of solid particles on a surface and causes major economic losses across diverse industries such as oil and gas, hydraulic transportation, and chemical processes. Erosion severely damages flow passages, valves and pipe fittings, leading to higher replacement costs as well as the loss of valuable production time. For example, some oil and gas fittings can fail after just 30 minutes of operation due to high erosion rates! Engineers need to quickly evaluate the erosion on dozens of design variations to find ways of stretching the part’s lifespan in order to reduce costs and maximize process up-time.

Continue reading

ANSYS 18 Fluid Dynamics Makes CFD Simulation Practical for Every Engineer

It is hard to believe that a year has passed and it’s time to update you on what’s new for ANSYS 18 fluid dynamics. There is so much to write about and so little space in this blog!

I’m tempted to detail our breakthrough Harmonic Analysis method that produces accurate turbomachinery simulations up to 100X faster.  Or I could focus on progress with Overset Mesh that speeds and simplifies simulations with moving parts. But that is not news, that just expected.  ANSYS has been delivering new levels of accuracy and advanced modeling capabilities from the beginning. Instead, I’m going to shine the spotlight on an area you might not expect from ANSYS: Ease of use. Continue reading

Dragonfly: The Mysterious Insect Driving Engineering Innovation

Who hasn’t dreamt of flying like a bird? From Leonardo da Vinci’s drawings of flying machines to Otto Lilienthal’s gliders, inventors have focused, quite logically, on human transport. We now take flying on airplanes for granted. But mechanical flight on a smaller, insect-level scale is less well-known. Micro-air vehicles (MAVs) have gained popularity in recent years due to wide range of small-scale applications in areas such as military, transportation, electronics, security systems, search and rescue missions, video recordings and many more. Successful prototypes depend upon valid, yet imaginative, designs as a starting point.  Continue reading

Design Subsea ROV Faster and Better with ANSYS CFD

The ROV, or subsea remotely-operated vehicle, is frequently used in marine operations such as underwater mapping, pipeline inspection and surveillance, sending payload, maintenance and operations on subsea oil and gas equipment such as BOP (blowout preventer) and Christmas tree assembly, which controls the oil/gas/water flow out of the well.

Underwater environments create various challenges for the manufacturers of the vehicle robotics. In addition to structure integrity under high pressure, complex underwater hydrodynamics characteristics due to coupling of motions in 6 degrees of freedom needs to be considered. Continue reading

CFD Simulation Enhances Machine Efficiency

On top of intensifying global competition, shifting consumer preferences and ever-shrinking time-to-market schedules, the growing need to address climate change is increasing  the pressure on businesses to  improve their machine efficiency and effectiveness with greater urgency than ever before. To meet these challenges, companies are finding that they need to revamp their product lines or even develop totally new products. Pump and fan manufacturers especially are seeing a need to for rapid innovation and design breakthroughs to increase machine efficiency. Continue reading

Serious CFD Calls for Serious CFD Software

Computational fluid dynamics (CFD) is a tool with amazing flexibility, accuracy and breadth of application. But the tools need to be properly applied in order to deliver insight and value. Nobody starts out as an expert in CFD software. Instead, we all progress from beginners to experts over time.

For example, when I first became interested in cycling, I went shopping for a new bike. I needed something better than the old junker I was riding at the time but was a bit intimidated by cycling technology. Those small, hard saddles looked plain uncomfortable! Skinny tires! And clipless pedals were a mystery. So I ended up with a “cross” bike. Continue reading

How to Avoid Sacrificing Accuracy for Speed When Prepping and Meshing CFD Geometry

I don’t know about you but I want the best I can get — whether I’m doing CFD prep and meshing or just living my life. It had better be good and speedy and easy — I want it all! Unfortunately, life doesn’t work always that way.

FenceFor example, I have a beautiful wrought iron fence in front of my house. The problem is that the fence is made of steel and as we all know, steel has the unfortunate property of rusting as the paint ages and loses integrity. So, this summer I have a big project to scrape, brush and repaint the metal. I’m not looking forward to the many hours of hands on time that will take! Continue reading

Combustion Simulation That is Good and Fast and Affordable

Impossible dreamThere’s an old project management adage that goes “Good. Fast. Cheap. Pick any two.” There are tons of websites and blogs about it. I’m particularly fond of this one about the designer’s holy triangle. Unfortunately, this holds true in the engineering simulation world. With “good” meaning “accurate,” you’re stuck with suboptimal choices: Good + fast = expensive; good + cheap = slow; fast + cheap = inferior. Product designers are stuck with good results that take too long or “directional” results fast. Good and fast just was not on the table. Continue reading


As I am sure you know, ANSYS general-purpose CFD codes are applied across such diverse industries as off-road (construction) vehicles, alternative energy, and oil and gas. This requires us to develop software that meets the modeling needs of the world’s largest user-base of engineering simulation. Which means our code can’t be everything to everyone. That is why we provide users with the ability to incorporate their own industry-specific capabilities. This level of openness that creates the opportunity for our users to implement their own cutting edge physics. This post will talk about how general-purpose CFD tools can be customized to model blood damage in medical devices. Continue reading