Accurate Spray-Wall Interaction Predictions with ANSYS Fluent 16.0

Computational Fluid Dynamics (CFD) has become an integral part of product design and development. Today, CFD is extensively used across industries like Aerospace, Automotive, Marine, Oil and Gas, Electronics, Health care, Process and Infrastructure. While CFD tools provide detailed engineering insights and shorter product development cycles at reduced cost, CFD community is constantly working hard to improve accuracy, speed and ease of use of these tools. Complex physical phenomenon such as detailed chemistry, primary atomization, electro-chemistry, icing formation are constantly investigated and newer, better and accurate numerical models are introduced in CFD tool. Continue reading

Blade Row Flow Modeling in ANSYS 16.0

As you have probably heard, in January of this year, ANSYS 16.0 was released with a full set of new features and exciting enhancements covering our entire simulation portfolio (see more here). But in this blog, I would like to tell you a little more about turbomachinery blade row flow modeling capability in ANSYS 16.0.

Transient blade row (TBR) simulation is an important analysis and design tool, enabling turbomachinery designers to reliably improve the performance and predict the durability of rotating machinery. Traditional  transient simulation methods are expensive since it requires simulation of all blades in the full 360 degrees  to accurately account for the pitch difference between adjacent blade rows. However, ANSYS CFX pitch-change methods resolve this challenge by providing time accurate  unsteady turbomachinery flow simulations on just a small sector of the machine annulus (typically simulating only one or a few blades, a reduced blade row model), thus tremendously reducing computing cost resources and and reducing the overall time to obtain the simulation. Continue reading

High-fidelity and Detailed Chemistry Approaches in IC Engine Modeling

In order to accurately meet legislated fuel efficiency and emission standards, present day IC engines operate across complex combustion modes and use novel fuel formulations. Accurate simulation of these modes and fuel formulations requires the use of detailed chemical mechanisms, which typically span hundreds of species and chemical reactions. Even with advances in modern computing technology and algorithms, detailed chemistry simulation approaches are computationally time consuming and scale with the level of detail employed. Continue reading

16 Cool New Features of ANSYS Fluid Dynamics 16.0

Another release of ANSYS fluid dynamics products, another round of great new capabilities. While some may say that a picture is worth a thousand words, I invite you to view the video below for more than 16,000 words on 16 Cool New Features of ANSYS Fluid Dynamics 16.0. And they are all winners — so this is not a ranking, just a list! Continue reading

And Another Victory for Ferrari – Hats Off!

image of Ferrari with ANSYS logoThe entire ANSYS Family congratulates Ferrari for their World Endurance Championship drivers’, teams’ and manufacturers’ titles in the GTE Pro class. The stats are pretty amazing:

  • 17th World endurance world title for Ferrari
  • 3rd title in a row for the Ferrari-run AF Corse Team
  • AF Corse Team drivers Gimmi Bruni and Toni Vilanderhad from the Ferrari-run AF Corse finish 1st and 2nd of the 2015 World Endurance Championship

Continue reading

Simulation Confirms Your Mom Was Right – Cover Up When Sneezing!

sneezing in airplaneWinter is coming to the Northern Hemisphere and, with it, lots of travelling for Thanksgiving and the holidays. Did you ever notice that upon traveling you sometimes end up getting sick afterwards? Ever wonder why? Researchers at the FAA Center of Excellence at Purdue University, created this simulation of a sneezing passenger using ANSYS to study the mechanics of pathogen travel in airplane cabins. Continue reading

EPA Imposes Stringent Emission Levels From Engines

EPA emission levelsRecently the Environmental Protection Agency (EPA) imposed more stringent emission levels from engines. These emission restrictions are expected to increase (lower levels) in the near future. As such, modern engine designs, inevitably will need to meet the goal of ultra clean combustion. Different pollutants are emitted due to incomplete combustion, like unburned hydrocarbons (UHC), carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (SOx), and black carbon (BC) — also known as soot. The environmental impact of each of these pollutants is well known and can range from reduced visibility due to smog and cloud formation to cancer and premature death when inhaled by respiratory system. Continue reading

Modeling Waves to Keep the Sea Clean

In 2013, over 4400 million tonnes of crude oil was extracted, which caters to roughly 33% of the global need for energy. Most of this oil is extracted from offshore sites and transported to shores for further processing. During this production and transport, if an accidental release of the crude or processed oil occurs, it is called Oil Spill. With the advancement of technology, volumes of oil spilled have reduced over last few decades, however, factors of human error and natural calamity can never be completely ruled out. Continue reading