Readers Choice for Top 5 ANSYS Advantage Articles

I enjoy working on every article I coordinate for ANSYS Advantage magazine. I always learn something new while assisting ANSYS customers and staff tell their stories of excellence in engineering simulation. I have no favorites as I appreciate all of the articles. But, I decided to let our readers choose their top five, based on the power of downloading. The following are the most-read articles from the four issues (three regular issues and one special issue for oil and gas) of ANSYS Advantage published last year. All these stories have one thing in common: They feature robust and reliable design practices. Drumroll please …

Continue reading

Ocean Waves – A Nightmare for Offshore Structures

You may have heard about the grounding of an Alaskan oil rig in January, 2013. The 28,000-tonne rig was pushed toward the shore by waves up to 35 feet and winds up to 62 mph, dragging its main towing vessel and a tug behind it. There have been several such oil rig incidents over the past few decades. The below image shows the failure of an another oil rig platform due to extreme wave forces. A huge wave hitting the offshore platform leads to high wave impact loads that can eventually result in significant platform damage and collapse. These incidents can cause fatalities and damages that can cost hundreds of millions of dollars. Continue reading

The Future of Simulation via HPC

The What-If studies that our software performs go a long way toward influencing future product development. With tons of features and their resulting design complexity, short development cycles, and consumer/regulatory demand for safety, innovative products call for computing tools — and most people think of CAD and CAE. The silent partner in this mix is the hardware and its ability to quickly and accurately perform the calculations.

Over the past few decades, engineering simulation providers have satisfied demanding design requirements by expanding and deepening their multiphysics capabilities. Now we can imagine what if … and we can conduct studies to test what if … But the truth is that any given simulation tool paired with the best hardware platform is no longer a recipe to fast, reliable solutions. The simulation tool itself must be designed to reap the hardware’s full potential, such as highly scalable and distributed HPC environments. Continue reading

Advances in ANSYS Mechanical 15.0 – High Performance Computing

ANSYS 15.0 contains a number of amazing achievements in the area of high performance computing (HPC) for the Mechanical APDL product. The performance is up to 5 times faster than previous releases, especially at higher core counts, by means of improved domain decomposition algorithms.

In addition, new parallel functionality was added in this release. One of the most important new features was the subspace eigensolver for vibration analyses, which supports distributed memory parallel and can be several times faster than the widely used block Lanczos eigensolver. Continue reading

Batch Computations and Remote Visualization in ANSYS 15.0

Are you happy with the way you access HPC resources? Some time back, I spoke with one of our customers about his daily experiences with his company’s HPC environment. He told me that the procedure to access the resources and dealing with the sessions is cumbersome and difficult to understand, especially for new employees.

batch computations

I replied that ANSYS 15.0 comes with a solution for launching and managing batch jobs and remote visualization sessions based on a Web front end. That resonated well with my counterpart, such that the conversation evolved into a more detailed discussion on the individual features of the solution.

After the conversation, I was sharing my experience with some colleagues. We agreed that being able to quickly demonstrate the above mentioned features is essential for being able to communicate the advantages. However, as you can imagine, deploying such a tool is not done with the installation of the software, but requires some configuration, such as hooking up the submission tool with the compute resources. Even if the configuration step is designed to be comfortably done through the Web GUI itself, it will take some time until customers will be able use the tool and collect their own experiences. Continue reading

More Engineers Adopting Robust Design Practices

In my July blog, I wondered if our customers considered moving forward with robust design practices. Since that time, I’ve found an increasing number of customers embracing and, more importantly, benefiting from these techniques. I’d like to give you a few examples that I think will appeal to you.

MLS approximation robust designFirst of all, let’s look at ANSYS customer Brose, a tier-one supplier specializing in developing and manufacturing mechatronic systems and electric drives for automobile bodies and interiors. Every year Brose supplies millions of window regulators to many automobile manufacturers. As you can read in this article, Brose engineers adopted robust design practices using ANSYS Mechanical and Dynardo’s optiSLang software so they could ensure the robustness of their window mechanisms for a wide variety of car models and assembly conditions. Continue reading

The ROI of Engineering Simulation

It is always my pleasure to meet with our customers and learn about how they deploy engineering simulation software in their organizations. At ANSYS, we are fortunate to work in a field that holds so many exciting uses for engineering simulation. The industry has come a long way since those days when management was skeptical about the value of performing simulations. But are organizations getting a good return on investment, or ROI?

Today, when I ask customers what they see as their current challenges, many of them tell me that they are so reliant on simulations that they are now being asked to do even more with little or no increase in the human resources made available. And as organizations rely even more on engineering simulations, it is not surprising that simulation teams are being asked to show greater return on investment. What I find surprising is that even when organizations are asked to reduce overall expenses, we see an increase in budget for deploying engineering simulation! Continue reading

From Supercomputers to Handhelds

A couple of weeks ago, I attended the Society for Industrial and Applied Mathematics conference on Computational Science and Engineering (CSE13). There I listened to a number of presentations given by mathematicians and engineers, who talked about running software programs on some of the biggest supercomputers in the world. When ANSYS was first founded in 1970, finite element analysis (FEA) simulations were typically performed on large “mainframes” that filled entire rooms — these were the supercomputers of that era.

More recently, the distributed solver in the ANSYS Mechanical product family was developed to allow engineers to run FEA simulations on large clusters, which is the hardware of choice for today’s supercomputers. In fact, in 2008 several mechanical simulations were performed on one of the TOP100 supercomputers in the world using the distributed ANSYS capability with calculations reaching over 1 Teraflop (over 1 trillion calculations per second). However, the point I want to raise today is that while ANSYS Mechanical software supports such speed and complexity required for the most numerically challenging and hardware-resource-intensive simulations, the power of a supercomputer is now available in the palm of your hand. Continue reading