The Role of Engineering Simulation in Energy Innovation

engineering simulation energy innovationA few weeks ago, I had the honor and privilege of being one of a few invited attendees at the DOE Mission Innovation Workshop on Grid Modernization. The workshop was hosted by the University of Pittsburgh and held at the Energy Innovation Center. Attendees included leaders from the Department of Energy, Pittsburgh city government officials, community and foundation organizations, and representatives from key local industries — including major utilities, electrical system integrators, electrical system manufacturers and technology companies (like ANSYS).

Pittsburgh, and other similar cities, face significant energy and sustainability challenges over the next few years. These challenges stem primarily from the significant disparity in the goals that have been set — as can be seen in the SmartPGH video — and the current state of the grid and industrial equipment. Continue reading

Creating Reliable SoC Designs Using N7 and InFO-WLP Technologies

According to Gartner, designing, testing and manufacturing 7nm FinFET-based system on a chip (SoC) requires massive resources: as much as $270 million and 500 man-years to bring the chip to market. Encapsulating such chips within a 2.5/3D package such as InFO-WLP improves power, performance and form factor while increasing the cost of design. To make a profit on that level of investment, the market for these chips tend to be high-end mobile and enterprise applications. To satisfy customer needs in these demanding markets, design teams have to deliver highly integrated devices that operate seamlessly and reliably for long periods of time. Additionally, you have to reduce the engineering time and cost, and ensure “first-time” working silicon. To do this you will need to move away from the traditional silo-based design flow to a chip-package-board co-simulation workflow and methodology. Continue reading

ANSYS in ACTION Demo Series Announced

I would like to tell you about a new weekly webinar series we’re launching called ANSYS in ACTION. Before I do, let me ask you a few questions.

Do you like to see software in action before trying it yourself? Are you curious about how ANSYS software can be used to solve your common applications? Are you willing to take a 20 minute hot beverage break once a week to learn something new?

If you answered yes to these questions, the ANSYS in ACTION webinar series is for you. Beginning October 13th, at 1 pm EDT, application engineers from ANSYS will spend 20 minutes each Thursday showing you how ANSYS software can solve common problems. We are selecting applications that a large number of engineers face and showing them our best and easiest to use simulation solution, the solution that will produce the results they need to make good decisions fastest, for each one. Continue reading

New Capabilities for Testing Embedded Software Announced

A number of new and exciting workflow enhancements were included in ANSYS SCADE 17.2 for those who are validating and testing embedded software. In this blog, I’ll cover the top 3 enhancements.

Virtual System Testing Using Simplorer Entry

In ANSYS 17.2, all SCADE Suite users can immediately simulate and analyze virtual system prototypes thanks to the bundling of Simplorer Entry.

One of the main objectives of embedded software users is to perform closed-loop testing to tune the software application — as early as possible. As a best practice, embedding the application within a virtual environment is a great way to reduce testing costs. It can be performed first with simplified model of the environment using Modelica language then moved to high-fidelity models. Continue reading

CFD Simulation Enhances Machine Efficiency

On top of intensifying global competition, shifting consumer preferences and ever-shrinking time-to-market schedules, the growing need to address climate change is increasing  the pressure on businesses to  improve their machine efficiency and effectiveness with greater urgency than ever before. To meet these challenges, companies are finding that they need to revamp their product lines or even develop totally new products. Pump and fan manufacturers especially are seeing a need to for rapid innovation and design breakthroughs to increase machine efficiency. Continue reading

Building Bridges Between Design Engineers and Analysts Using Engineering Simulation Software

Many companies, large and small, have individuals or groups using powerful engineering simulation software like ANSYS Mechanicalone of our flagship products. These analysts tackle some of the most complex and challenging engineering problems for their organizations.

These same companies often also have separate teams of engineers working daily on new and evolving product designs. They are often experts in CAD modeling, using CAD-embedded simulation tools to evaluate their designs. These basic simulation tools provide some useful guidance, but often fail to provide the accurate results needed to refine and optimize designs with confidence. Consequently, many design simulations must be handed off to the relatively small number of simulation analysts using trusted simulation tools like ANSYS Mechanical. Continue reading

Maximizing Engineering Throughput with Pay-Per-Use Simulation in the Cloud

My colleagues Steve Del, Giovanni Petrone and I often discuss the benefits of moving engineering simulation to the cloud, marshalling greater computing resources and faster processing on high-performance computing (HPC) solutions. While most companies would find this compelling, budget-conscious companies are concerned about the costs. The missing piece is a pay-per-use simulation business model, where  you use what you need, when you need it, and only pay for what you use.

Well, now that piece is in place. Last week’s release of ANSYS Enterprise Cloud adds support for ANSYS Elastic Licensing™, enabling you to fully leverage the pay-per-use business model on the public cloud for both hardware and software. Continue reading

Upfront Thermal Optimization with ANSYS AIM 17.2

Optimizing heat transfer and controlling temperatures is a critical design engineering issue for many industry applications, including heat exchangers, thermal mixing valves, exhaust manifolds and electronic devices. Accurate prediction of the temperature in both the fluid and solid components is essential to accurately predict the thermal performance of a product design. By performing upfront thermal simulation, design engineers are able to accelerate product designs, mitigate late stage design changes and reduce physical prototypes. ANSYS AIM is an easy-to-use simulation environment designed for all engineers to rapidly and confidently evaluate product performance well before design decisions are locked-in. ANSYS AIM 17.2 includes many new features for upfront thermal simulation. Continue reading

You Can’t Use Simulation to Design Planar Magnetic Transformers!

Throughout my 25 years in the computer-aided engineering industry, some of the smartest people I know have told me that you can’t use simulation to design planar magnetic transformers. Is it true? No! What they’re really saying is that there isn’t an effective way to simulate the devices to predict the full behavior — which includes electromagnetic losses, harmonic content, EM-thermal coupling and ultimately how the electromagnetic fields and temperature affect the circuit — in a reasonable amount of time for simulation to be an effective design tool. Continue reading

Antenna Design Workflow with ANSYS 17.2

antenna-designAntennas are the lifeblood of connected, mobile and many emerging IoT products. Consumers expect a reliable connection every time; anything short can kill a product launch or, worse yet, tarnish a corporate brand. That’s the market reality. The engineering reality is that there are significant engineering challenges associated with designing antennas and radio systems, including providing reliable connectivity and maintaining reasonable performance within an ever shrinking design footprint. Many of today’s devices need to operate in an increasingly crowded radio spectrum with the possibility of co-site conditions, operation near the human body and other challenging installed environments. Continue reading