ANSYS Adds 3DSIM for Simulation-Driven Additive Manufacturing

As we announced recently, ANSYS and 3DSIM have joined forces to offer engineers, designers and machine operators the only end-to-end additive manufacturing (AM) simulation workflow in the world today. We call it simulation-driven additive manufacturing. The powerful combination of exaSIM and FLEX from 3DSIM with ANSYS Workbench and the full line of ANSYS solvers will give you unprecedented design-to-print capabilities for AM.

Why is this important? Because there are still challenges to be overcome in AM — especially for metals — to ensure that every part will be built successfully with full confidence in its design and functionality the first time through the AM process. Our aim is to ensure first build success through comprehensive simulation of all aspects of additive manufacturing, from machine setup to the microstructure of the metal to the structural integrity of the finished part. Continue reading

Using Realistic Bulk Material Loads in ANSYS for Optimized Equipment Design

When designing heavy equipment such as bucket loaders, truck bodies and diggers, finite element analysis tools, such as ANSYS, are a ‘must-have’ in any design engineer toolkit in order to assess the structural integrity of designs and ensure their durability and performance. But while FEA will provide engineers with a wide range of tools for setting up meshes, joints, and boundary conditions, there is one thing missing in this analysis: the bulk material itself that the machine is supposed to handle! DEM (Discreet Element Method) offers additional capabilities to account for bulk materials.

Continue reading

Thermo-Mechanical Analysis Methods for Printed Circuit Boards: Part 1

As electronic devices become smaller and more ubiquitous, the printed circuit boards and components that drive them face increasing power densities and evermore complexity. To ensure product reliability and performance, accurate and detailed analysis methodologies are necessary. In a three-part series, Mike Bak and I will discuss modeling approaches for the thermo-mechanical analysis of printed circuit boards and their components. In part one of this series, I will cover modeling approaches for the PCB itself.

A typical PCB will have multiple layers, each one having its own distribution of FR-4 and copper traces and vias. Take the board layout shown in Figure 1 as an example, which has over 16,000 traces and vias across 7 layers. The complex board geometry leads to spatially varying material properties (i.e. modulus of elasticity, density, thermal conductivity, etc.) that must be accurately specified by the analyst for any type of simulation.

Thermo-mechanical Analysis of a printed circuit board

Figure 1: Typical PCB Layout Geometry

So, what are some ways that we can model this type of geometry? I’ve outlined below some common approaches: Continue reading

How to Approach Topology Optimization in ANSYS AIM 18.2

Topology optimization has been around for last 20-25 years, however only recently got more attention due to improvements made in additive manufacturing and 3D printing processes (DMLS (DMLM), EBM, SLM, SLS). More importantly, simulation driven topology optimization is rekindled due to more cost effective availability of almost infinite compute capacity in the form of GPUs, TPUs and cloud which makes it easier than ever to iterate over design choices. Modern topology optimization is mixed with machine learning to learn aesthetic styles and further complement the design by volumes of simulation.

ANSYS took its first step in ANSYS 18.0 in the context of ANSYS Mechanical and now it is expanded to the designer community through ANSYS AIM addressing primarily two key issues: abstracting the mechanics of simulation with eager program controlled setup followed by embedded experience with automated geometry reconstruction. You can organically design parts from a single block of material or improve an existing design, both workflows are fully supported and where possible automated. Continue reading

Using ANSYS Super-element with GENESIS for Efficient Topology Optimization

Anil Kumar (Senior Engineer – ANSYS) and I thought it would be interesting to share information about integrating ANSYS super-element with the GENESIS structural optimization extension for ANSYS. With ever-increasing computational power, engineers can solve larger FE models in less time. However, optimization is still a serious concern because it is an iterative process and the FE analysis usually needs to be performed multiple times.

Typically, the parts that engineers choose to optimize are only a subset of large assemblies. For example, when optimizing the chassis, the engines and other components attached to it are not designed at the same time. It is not necessary to model all the details of those components not participating in the optimization.

Continue reading

Hey You, What’s that Sound?

I’m one of those people who get wound up by the sound of a rattle of the smallest type. Noise and vibration are more than just a bug bear though — or pet peeve depending on your geography — and simulation of acoustics is something can have a big impact on more than just the easily agitated (like me).

Systems that generate (undesired) noise are not efficient, some of the energy they use goes into making the sound.

A prime example would be a motor-driven gear train. The whine that motors emit and the noise from the attached gearbox could be a major source of noise in an otherwise quiet system. It is also a sign that things aren’t as they should be. Continue reading

New Version of ANSYS Mechanical – New Capabilities

Engineering is a pretty exciting place to be right now. There seems to be amazing news about new products and technologies being tested and released nearly every day. ANSYS 18.2 just launched and it’s packed with cool stuff. ANSYS Mechanical has a raft of new capabilities to help engineers make new technologies a reality. 

I’m amazed at some of the commercial space industry achievements going on right now and of course, being a big car fan, the technology going into the automotive sector is just incredible. In order to bring these products to market, big changes are taking place in the companies designing these products.

More efforts are being put into every aspect of product design and the drive to build better products faster means increased pressure on engineers. Continue reading

Topology Optimization in ANSYS 18.1 – Motorcycle Component Example

If you’re not familiar with topological or topology optimization, a simple description is that we are using the physics of the problem combined with the finite element computational method to decide what the optimal shape is for a given design space and set of loads and constraints. Typically our goal is to maximize stiffness while reducing weight. We may also be trying to keep maximum stress below a certain value. Frequencies can come into play as well by linking a modal analysis to a topology optimization.

Why is topology optimization important? First, it produces shapes which may be more optimal than we could determine by engineering intuition coupled with trial and error. Second, with the rise of additive manufacturing, it is now much easier and more practical to produce the often complex and organic looking shapes which come out of a topological optimization. Continue reading

Powering Devices with Vibration

Vibration in terms of simulation, for me at least, immediately makes me think of vehicles and larger structures: ride comfort in cars, the incredible forces caused by vibration that equipment on rockets see and rotating machinery. These are all obvious areas that our customers use simulation to help understand the effects of vibration. It seems that designers of much, much smaller devices are also very interested in vibration.

vibration power generation

Continue reading

3 Ways to Boost ANSYS Performance with Intel Technologies

Intel Supercomputing 2017

ISC 2017 in Frankfurt, Germany (copyright Philip Loeper)

My visit to ISC High Performance last month in Frankfurt, Germany re-affirmed my belief that computing innovation shows no signs of slowing down. I participated in an industrial HPC user panel at the event, which has traditionally focused on big supercomputing solutions for government and research institutions. The fact that this year’s ISC broke attendance records and dedicated so much time to industry sessions shows how much HPC has become entrenched in other industries.

We have been working with Intel on a few innovations that I wasn’t at liberty to discuss at ISC, but can now share with you that Intel announced its new processors and improvements to their accompanying technologies yesterday. We have been working with Intel to benchmark ANSYS software on the new technologies before their release, so that our mutual customers can immediately see what benefits they’ll receive. Here’s a sneak peek at the results. Continue reading