ANSYS on Capitol Hill: Simulation is An Important Component to Solve the Global Healthcare Issue

Over the last six months, significant progress has been made to foster Transatlantic collaboration in the area of in silico medicine. I say significant because the collaboration is now being fostered beyond the technical level. It is happening at the regulatory and policy levels. On October 11th, 2016, the U.S. FDA spoke at the European Parliament as part of an inauguration event for the Avicenna Alliance, the association of predictive medicine, of which ANSYS is a founding member. Last week, the collaboration was reciprocated. The Avicenna Alliance was invited by the FDA and by the staff of Senator T. Cochran to discuss the role of in silico medicine in both a technical context at the 2017 BMES conference and also at the policy level on Capitol Hill. Continue reading

Interactive Script-defined Tools Change the Game in Modeling

If you turn on the TV or browse the internet these days, automation is a familiar topic. From smart homes to learning thermostats, the drive to save time and effort by automating repeated tasks is everywhere. We use words like ‘smart’ to indicate that our devices are no longer one-size-fits-all but instead adapt and can be programmed to better suit our needs and behaviors. So, too, should be the case with our engineering software! That is why we have spent over a year to add scripting, a broadly applicable interface for automation and customization of modeling, to the ANSYS SpaceClaim geometry modeling environment.

In a previous blog post, we introduced SpaceClaim scripting and how it can automate repetitive or tedious tasks. With ANSYS 18.1, we’ve taken it a step further and made it easier to share and use SpaceClaim scripts outside of the editing environment. By publishing scripts to dedicated buttons in the user interface or calling them from within a Workbench script, you can now use the power of scripting in more places than ever before. Furthermore, we have extended the interaction with scripts to allow for user input of selections and values during execution. Let’s take a closer look at these improvements. Continue reading

Free Download – New ANSYS Student Product Downloads Released

Who was it that said “Nothing in life is free?” Whomever it was, they were wrong. There are a ton of amazing things in life that are free — including our ANSYS Student Version products! Speaking from experience, there has never been a time I have appreciated something free more than when I was a student working my way through college.

In late 2015, we launched our ANSYS Student free download, and since then have released several updated versions. Just recently we made some exciting changes with our new Student Product page boasting two new ANSYS Student Products for Windows x64: ANSYS AIM Student 18 and ANSYS Student 18. Both are now renewable, 12-month product licenses with a shorter and simpler download process. Best of all, we’ve eliminated the need for you to fuss with a separate download key! Continue reading

Digital Prototyping for More Powerful Pumps

Routine maintenance of sewer pipes is necessary to prevent clogging, cracking and failure in the long run, saving sewage companies considerable time and money. FMC Technologies, which makes reciprocating pumps used to force water at high pressure through sewage pipes to clean them, turned to engineering simulation to design their latest product when customers began demanding smaller, lighter pumps with a higher output pressure. These pumps would be easier for the operator to move and place for optimal operations in the field. Also, reducing size and weight would make the pumps less expensive to purchase, easier to maintain and more energy efficient.

sewer pipe

Continue reading

Lightening the Load with Composites and Digital Prototyping

Airlines and aircraft manufacturers are doing everything they can to lower their costs, including lightweighting every component possible, which can improve fuel efficiency. The industry spends more than a hundred billion dollars on fuel every year. While the price of oil is relatively low today, manufacturers and airlines must look ahead to the more than 25-year life span of the average airplane, assuming someday prices will rise again. Cost is a major driver, but the industry is also committed to reducing emissions during flight, and reducing fuel burn from the engine helps achieve this goal. Lightweighting, then, is one of the most important trends in the aerospace industry, and using composites, that can offer the required strength but at lower weight than metals, in manufacturing is a key strategy.

aircraft cargo area

Continue reading

Accelerating Innovation Through HPC-Enabled Simulations

HPC Ferrari RacesMany engineers are using powerful simulation software but are still not deploying HPC to the full extent. Case in point, I presume most of you have heard about the 24 Hours of Le Mans race. There is one starting June 17. I find it very exciting, not least because teams of three drivers per car compete to complete the most laps around the 13.629-km Circuit de la Sarthe in 24 hours! The race cars reach more than 320 km/h on the straightaway, spending most of the 24 hours at full throttle.

Imagine the roar of the engine drowning out the cheers of the crowds as you speed smoothly around the track in a finely tuned (thanks to simulation) race car. Now imagine the track is a country road or dirt road, not so smooth or speedy now, is it? Continue reading

Antenna Industry is Being Revolutionized Through the Simulation of Metal 3-D Printed Antennas

Recent advances in 3-D printing with metal have advanced to the point where antennas and RF components can be consistently fabricated with excellent performance in the millimeter wave frequencies. Optisys is a startup based in Utah that is focused on using the most advanced simulation tools to design antennas and radio-frequency (RF) components that could not have been fabricated a few years ago. The use of 3-D printing an antenna creates orders of magnitude reduction in size, weight, and lead time. These savings are enabled through a key partnership with the ANSYS Startup Program. Continue reading

Women in Tech and the NAFEMS World Congress

women in tech engineering 3D

About 6 weeks ago, I attended the NAFEMS Multiphysics and Multiscale conference in Columbus, Ohio, USA. I have witnessed the benefits women in tech bring to their companies and themselves and make a habit of counting how many women are at these events. I am excited when the number of women exceeds 10% of the attendees. This event did not quite meet that benchmark. Most conferences I attend in the simulation space do not. As a woman in tech with a keen interest in increasing the number of women in engineering and technology as well as promoting and supporting those already there, I find this disheartening. Continue reading

Additive Manufacturing – Re-engineering Engineering

On the 11th of June I, along with quite a few of my colleagues and a number of our customers will be heading to Sweden to the NAFEMS conference. I’ll be there to talk about our work in the area of Additive Manufacturing.

Additive manufacturing is the poster child of the engineering world right now. There are other posts on the web and on the ANSYS blog talking about this and what the opportunities are that it brings. But I wanted to talk about the changes that must make to the whole product development process.

It’s pretty well understood that product development is pretty well down the path to shift away from a time when simulation was used to figure out why something broke. Now simulation is more routinely being used up front in the design process to develop products that are, more often, right first time. Continue reading

Efficiently Modeling Turbulent Combustion with Realistic Chemistry Using a Flamelet-Generated Manifold

The main challenge of turbulent combustion simulation is to resolve turbulent mixing together with the chemistry of combustion involving hundreds of molecular species, in a solution time that is compatible with engineering design. Steady diffusion flamelet-based turbulent combustion models have been used for nearly three decades. The computational efficiency of flamelet-based models has been the key to their widespread success in industrial applications. However, increasingly stringent emission requirements continuously push designers to incorporate more finite-rate chemistry effects for the engine simulations in a more comprehensive manner. Continue reading