Bladeless Propulsion System Developed to Replace Propellers

For over 100 years, propellers have been the propulsion method of choice for aircraft, helicopter, and boat manufacturers. With the rise of multi-rotor technology, the limitations of this ancient method of propulsion have placed a glass ceiling on emerging industries such as drone delivery and “flying cars.” Besides the obvious safety issues, the faster that a blade rotates the more inefficient it becomes at transferring energy into thrust. A key reason for this upper limit on economies of RPM is that the faster a blade spins, the more prominent the vortex geometry becomes in the mass flow, which is parasitic to propulsion. This constrains both payload and range. Continue reading

What We Can Learn from the Wright Brothers on National Aviation Day

Tomorrow is Orville Wright’s birthday and we celebrate National Aviation Day and the incredible progress made in aviation in just over 100 years. It was December 1903 when Orville became the first pilot of an engine powered aircraft, staying aloft for 12 seconds and covering a distance of 120 ft. at 20 ft AGL. Five years later he was able to stay aloft for an entire hour, reaching an altitude of 350 ft.

Indeed, the Wright brothers are a great example for all those who want to innovate. Many pioneers lost their lives or were badly injured in their attempt to demonstrate their ideas, test new concepts and to tame phenomena they were still not able, sometimes very far, to understand and master. Continue reading

The Engineering Behind Why It’s Too Hot to Fly

I’ve read a lot of articles talking about an interesting fact: this summer was so hot that in some cities like Phoenix aircraft could not fly. If you are an engineer or a pilot, it should not be a surprise that in hot weather an aircraft’s performance can deteriorate until the point it is unsafe to attempt take off. But maybe you have not considered all the possible causes of why it’s too hot to fly. I will try to explain things in a very basic and simplified way, for the benefit of those who are not familiar with these phenomena.

American Airlines canceled dozens of flights out of Phoenix on June 19 due to extreme heat. (AP Photo/Matt York)

Continue reading

Avionics System Engineering: A Complex Problem Demands an Advanced Solution

avionics system engineering cockpitAs one of today’s avionics system engineers, you have a difficult task —  integrating a diverse range of functionally complex components, provided by multiple suppliers, into a system that is reliable enough  to ensure consistent aircraft performance and passenger safety. You also need to understand and meet numerous regulatory operating systems and protocols, including ARINC 653, ARINC 429, CAN and ARINC 664. Continue reading

Icing Again? Did I Miss the Summer and the Fall?

Looking back at my blogs this year, in February I talked about the ANSYS’ acquisition of the assets of NTI, Inc, which now enables us to offer the most comprehensive solution for integrated aerodynamic and icing simulations. The picture I shared was of a typical winter scene at a New Hampshire airport — the view of the de-icing process from inside an aircraft. Then in April, with Spring very much upon us, I talked about the upcoming event in Italy in partnership with CIRA. I am very pleased to report that this event went very well with over one hundred delegates and speakers from leading companies such as GE, Safran and Airbus. Thanks to all our speakers and to all who attended. So why do I think I may have missed the summer and the fall? Continue reading

Collaborating to Reduce Gas Turbine Fuel Burn

The pressure is on to reduce fuel burn for gas turbines of all types. The need is particularly acute for aircraft engines, in that fuel is a large component of operating costs of an airline, so much so that even the volatility in its price can mean the difference between profit and loss. So when airlines demand more fuel efficient aircraft, much of that requirement is passed along to the engine manufacturers. While reducing gas turbine fuel burn is a primary driver, carbon emissions are related, so reducing the fuel burn “kills two birds with one stone”. Continue reading

Aerospace at the Cutting Edge: From Drones to 3D Printing

commerical aircraft using ansysThe aircraft industry is an exciting place to be today. The media is full of the potential for commercial drone applications. But in the here and now we have large commercial aircraft on the market made from over 50% composite materials. These aircraft represent decades of innovation and will make a significant and positive impact on lifecycle cost of operation and the environment. You may recall that we recently shared a case study from Terrafugia where they discussed the integration of composite materials into the airframe of a car-come-aircraft. Along similar lines, EADS Innovation Works have shared details of their experiences with ANSYS composite material design tools. Continue reading

Hybrid Aircraft with Distributed Electric Propulsion

Courtesy Mark Moore, Design Engineer at NASA Langley Research Center

Courtesy Mark Moore, Design Engineer at NASA Langley Research Center

When I attended the AIAA SciTech Conference, I was impressed by a talk about electric aircraft, with a focus on distributed electric propulsion, presented by Mark Moore, a Design Engineer at NASA Langley Research Center. After returning from the conference, I started to read more about these concepts — especially looking for the benefits, challenges and most importantly to see how ANSYS simulation tools can help address the challenges.

Continue reading

The New Frontier of Embedded Software Cont’d

Continuing from my post yesterday about the new frontier of embedded software.

Nowadays it is not enough to just fly the plane, pilots have to manage tons of information while flying and they are connected with  other units on the battlefield through a network that allows real time co-ordination.

image of the F-104 Starfighter Cockpit

F-104 Starfighter Cockpit

image of Lockheed Martin F22A Raptor Cockpit

Lockheed Martin F22A Raptor Cockpit

Have you seen the cockpit of a new generation aircraft? Google the F-22 or the F-35 and compare them with the one from an F-104;  you will not recognize a single piece of equipment. Head to YouTube and enjoy a video showing the maneuverability of one of these modern airplanes. Amazing!

Today simulation is widely used, aerodynamics is now explored in detail so engineers can master all the phenomena that affect the flight even in extreme conditions, and new configurations allow these aircraft to challenge physics laws… and win!!  I’ve seen a Eurofighter Typhoon during a test flight operate at 80 knots and at no more than 100 feet from the runway — almost still in the air — flying with an angle of attack of 60 degrees. This could have been considered science fiction by an F-104 pilot.  I’m amazed by the maneuverability of the F-22 or what an SU37 can do. I’m always impressed and fascinated with how aircraft designers created these masterpieces of engineering. Continue reading

The New Frontier of Embedded Software – Part One

A few months ago at the ANSYS Worldwide Sales Conference, I had the opportunity to view the many advancements and get briefed on other news concerning our simulation platform. As part of this learning experience, I thoroughly enjoyed meeting our newest colleagues from Esterel Technologies and finding out how embedded software is becoming key in the development of a new generation of products. From aerospace to automotive and transportation, from medical devices to energy generation plants, it is an important piece of the Simulation-Driven Product Development vision. In a 2-part blog, I’ll explain what this means to me.

Part One

image of the Lockheed F-104C Starfighter

Lockheed F-104C Starfighter

As I’ve mentioned before I’m quite fond of aircraft, so I’ll illustrate this point by talking about some very famous military planes, starting with the glorious Lockheed F-104 Starfighter. This incredible aircraft was designed in the early 1950’s by a myth among engineers — Kelly Johnson. His goal was to create a light, easy-to-maintain, simple and cost-effective airplane that would climb as fast as possible to operating height and engage in hostile contact with radar-guided missiles. Continue reading