Why 10x More HPC Matters?

hpc scalibilityIn my talks with engineering managers, flow analysts and IT staff, I often hear variants of this question. Why is more computing power a strategic asset for my engineering department? Why does scalability matter for my simulation jobs that don’t go beyond 32–64 cores in parallel? What’s in it for IT when we are stuck with our current HPC server or cluster for at least two years? Let me try to answer each of these questions.
Continue reading

Calsol Solar Team Produced Optimized Design Using Simulation

CalSol Solar Vehicle Team, UC Berkeley, is a student-run organization that designs, builds, tests, and races solar vehicles capable of traveling at highway speeds. Through participation in solar races and alternative energy as well as community outreach events, the team also aims to raise awareness of solar energy while focusing on the engineering challenges inherent in solar vehicle technology.

image001

In order to be a competitive vehicle team, an aerodynamic vehicle design and good battery cooling systems are very important. Continue reading

Flint Water Crisis Explored: Keeping Our Water Supply Clean

Clean water is one of the most basic necessities of our lives. Our health depends on it. What transpired in the Flint water crisis in Michigan recently has shocked the nation. President Obama declared a state of emergency and there are demands that the Governor of Michigan steps down. It all started when, in order to reduce cost, the City of Flint officials decided to use Flint River water for residential consumption without adding orthophosphate, a chemical that coats the pipe interior thereby inhibiting any leaching of lead. Continue reading

Engineering Simulation – The 10x Multiplier to Top-Line Growth

ansys 17 10X engineering simulationOver the past two decades, I’ve had the good fortune to meet with product development teams in nearly every industry, attend a multitude of engineering conferences and read hundreds of case studies on engineering simulation. Without a doubt, the principle reasons driving businesses to invest in engineering simulation have been to reduce development time and costs while improving product quality. Continue reading

CFD Simulation of Avalanches and Other Snow Flows

Winter has arrived in the northern hemisphere and with it comes snow. Snow complicates our lives — roads become slick with ice and drifts can block our way. When it piles up high on mountains, avalanches can wreak havoc.

Continue reading

Advancing Solid Rocket Propulsion System Design

concordeIt has now been over a decade since commercial travelers were able to experience supersonic flight on the Concorde aircraft. News items will periodically surface about the possibility of travel across the Atlantic in an hour or less, but these are usually media hype based on a recently filed patent or publication. The reality is that we are still many years away from a commercial aircraft that can match the speed of Concorde. And, this is a plane that first flew close to 50 years ago. Who knows how far away we are from the transportation technologies we were supposed to have on the recently passed Back to the Future Day, October 21st 2015. Continue reading

Taking Laminar-Turbulent Transition Modeling to the Next Level

Flows around aerodynamic bodies, like aircraft wings, helicopter blades, wind turbines and turbomachinery components develop boundary layers that, to a large extent, define their performance. The boundary layers can either be laminar or turbulent depending on numerous factors, like Reynolds number, freestream turbulence levels and surface roughness, to name a few. Understanding which type of boundary layer is present, and the location of the laminar-to-turbulent transition point under varying operating conditions, is essential for accurate predictions of the performance of aerodynamic devices. Continue reading

Engineers Harness the Power of the Adjoint Solver

In a previous blog, I shared with you my excitement about the power of the adjoint solver technology for shape optimization from ANSYS. Since then I have been working tirelessly to make this remarkable technology even more capable. CFD engineers can now understand their designs better and can perform smart shape optimization, all for larger problems with richer physics thanks to the adjoint solver technology.

My numerous interactions with people from all around the world confirmed what I knew: the adjoint solver technology is powerful and has the capability to enable a sea-change in the fluid design process. The technology is already having a positive disruptive impact on design, especially among the early adopters. Products are being improved. Established concepts about some types of fluid systems and how they function have been overturned. New manufacturing procedures are being attempted in order to produce the shapes indicated by the adjoint.

Continue reading

Wall of Wind (WOW) at Florida International University Helps Mitigate Hurricane Damage

wall of windIn coastal areas, hurricanes can severely damage buildings, people and cause a lot of havoc. Therefore, scientists at Florida International University (FIU) are studying hurricanes and how their effects can be mitigated using the Wall of Wind (WOW). WOW is a research facility developed by FIU’s International Hurricanes Research Center (IHRC), Miami, Florida. Continue reading

Developing Comprehensive Turbomachinery Simulation Solutions

I have always been fascinated by turbomachinery: pumps, compressors, turbochargers, state-of-the-art aircraft engines etc. Anything that spins is of interest. This is one of the key reasons why I love going to work at ANSYS every day. I can contribute to creating the best turbomachinery simulation solutions.

Demonstration simulation of the turbine side of a turbocharger, using a geometry design provided by our partner PCA Engineering.

Demonstration simulation of the turbine side of a turbocharger, using a geometry design provided by our partner PCA Engineering.

I am often asked “What are you working on? Turbines? Compressors? Hydraulic turbines?” Well, the answer is all of the above, and more. This is because our physics solutions are not limited by machine type, material or flow regime. Similarly, our turbomachinery-specific pre- and post-processing tools apply across machine categories. Besides, complex machines such as an aircraft engine have many parts: compressor, turbine, combustion chamber, complex secondary flow channels, etc. So with each new release of ANSYS, we strive to improve the simulation solutions that we provide to our turbomachinery customers.

Continue reading