Engineering a Hyperloop Pod with ANSYS

Since starting out as a segmented group of individuals passionate about high-speed technology, Berkeley Hyperloop (bLoop) has come a long way in our (roughly) two years of existence. What started as a vague mission to create a broader impact on the future of transport is now a tangible team of engineers, designers, marketers, logisticians and everything in between and we have no plans of stopping now. Of course, we didn’t do it alone. We’d be remiss if we did not acknowledge the generous support of sponsors like ANSYS, sponsors that have helped us realize the dream of designing and bringing a functional Hyperloop pod to that only existed in our wildest dreams up until a few months ago.

berkeley hyperloop pod ansys Continue reading

ANSYS HPC: On to a Million Cores!

ANSYS CFD is on the verge of a second renaissance in high-performance computing (HPC). The first, spanning more than a decade, has seen tremendous leaps in both the depth and breadth of HPC capabilities. Depth (or heights, rather) in the size of the scalable clusters — first 1000s, then 10K, and recently 100K core counts — and breadth of coverage across solvers, physics, post-processing, even file I/O, covered the gamut of high-performance simulations. The trend, in fact, is exponential, as evident in this chart, and spans many years of ANSYS Fluent software releases. While there are other impressive scientific scalability demonstrations, ANSYS Fluent set the standard for industrial HPC CFD simulations. Continue reading

Solution Dependent Expressions for Fan Cooling Simulation with ANSYS AIM 18

In ANSYS AIM 18, design engineers have reason to be excited about increased functionality for fluids, structural, thermal and electromagnetics. While the foundational problem-solving functionality has existed since AIM 16, new functionality is being added in every release so AIM can better address niche applications. One such enhancement I’d like to bring to your attention is solution-dependent expressions for applications like fan cooling simulation. While this isn’t something I guarantee you’ll use in your everyday simulations, it is a powerful feature needed for certain calculations. Continue reading

Celebrating 20 Years of Solar Racing with ANSYS

On November 18, 2016, the Blue Sky Solar Racing team gathered at the MaRS Discovery District to celebrate our past achievements and to look forward to the future. We hosted a number of our industry sponsors, faculty supporters, and alumni who explored various displays on the team’s history including photos, trophies and artifacts from past cars. Four generations of cars were displayed at this event as well, including Cerulean (2007), Azure (2011), B-7 (2013) and Horizon (2015). It was an incredible way to celebrate the achievements of the past 20 years of Blue Sky Solar Racing with those who have been part of our journey. Continue reading

Better Particle Erosion Fluid Dynamics Modeling in ANSYS Fluent 18

ANSYS Fluent 18 has advanced erosion fluid dynamics modeling by adding three industry-standard models to the previous default model.

Erosion wear is the loss of material due to repeated impact of solid particles on a surface and causes major economic losses across diverse industries such as oil and gas, hydraulic transportation, and chemical processes. Erosion severely damages flow passages, valves and pipe fittings, leading to higher replacement costs as well as the loss of valuable production time. For example, some oil and gas fittings can fail after just 30 minutes of operation due to high erosion rates! Engineers need to quickly evaluate the erosion on dozens of design variations to find ways of stretching the part’s lifespan in order to reduce costs and maximize process up-time.

Continue reading

FREE Cornell University Course Teaching Engineering Simulations

Do you or someone you know want to learn how to simulate exciting engineering applications using ANSYS and pick up a practical skill sought by employers? Starting next week, February 15th, Cornell University is offering a Massive Open Online Course (MOOC) that teaches the hands-on use of ANSYS. This FREE online course entitled “A hands-on introduction to engineering simulations” is self-paced, enabling participants to go through the lecture videos and complete homework problems on their own schedule. Interested people can sign up now.

Continue reading

Dragonfly: The Mysterious Insect Driving Engineering Innovation

Who hasn’t dreamt of flying like a bird? From Leonardo da Vinci’s drawings of flying machines to Otto Lilienthal’s gliders, inventors have focused, quite logically, on human transport. We now take flying on airplanes for granted. But mechanical flight on a smaller, insect-level scale is less well-known. Micro-air vehicles (MAVs) have gained popularity in recent years due to wide range of small-scale applications in areas such as military, transportation, electronics, security systems, search and rescue missions, video recordings and many more. Successful prototypes depend upon valid, yet imaginative, designs as a starting point.  Continue reading

Design Subsea ROV Faster and Better with ANSYS CFD

The ROV, or subsea remotely-operated vehicle, is frequently used in marine operations such as underwater mapping, pipeline inspection and surveillance, sending payload, maintenance and operations on subsea oil and gas equipment such as BOP (blowout preventer) and Christmas tree assembly, which controls the oil/gas/water flow out of the well.

Underwater environments create various challenges for the manufacturers of the vehicle robotics. In addition to structure integrity under high pressure, complex underwater hydrodynamics characteristics due to coupling of motions in 6 degrees of freedom needs to be considered. Continue reading

How to Avoid Sacrificing Accuracy for Speed When Prepping and Meshing CFD Geometry

I don’t know about you but I want the best I can get — whether I’m doing CFD prep and meshing or just living my life. It had better be good and speedy and easy — I want it all! Unfortunately, life doesn’t work always that way.

FenceFor example, I have a beautiful wrought iron fence in front of my house. The problem is that the fence is made of steel and as we all know, steel has the unfortunate property of rusting as the paint ages and loses integrity. So, this summer I have a big project to scrape, brush and repaint the metal. I’m not looking forward to the many hours of hands on time that will take! Continue reading

Combustion Simulation That is Good and Fast and Affordable

Impossible dreamThere’s an old project management adage that goes “Good. Fast. Cheap. Pick any two.” There are tons of websites and blogs about it. I’m particularly fond of this one about the designer’s holy triangle. Unfortunately, this holds true in the engineering simulation world. With “good” meaning “accurate,” you’re stuck with suboptimal choices: Good + fast = expensive; good + cheap = slow; fast + cheap = inferior. Product designers are stuck with good results that take too long or “directional” results fast. Good and fast just was not on the table. Continue reading