Simulation Used to Spur Design Development for Nuclear Power

Nuclear power is a key player in the future of clean energy, and multiple companies are pursuing new technologies to maximize nuclear’s contribution to the clean energy space. Founded in 2011 and based in Cambridge, MA, Transatomic Power is an advanced nuclear technology startup developing and commercializing a molten salt reactor (MSR), or a nuclear reactor whose fuel is in liquid, rather than solid, form. This technology, originally developed at the Oak Ridge National Laboratory (ORNL) in the 1960’s, offers multiple safety and cost benefits over traditional nuclear reactors, in which the fuel is in the form of solid pellets cooled by water.

Tranatomic’s MSR design builds on the original work at ORNL and adds a few innovative new features that reduce the reactor’s size and, as a result, it’s cost – a huge factor in building new nuclear power plants. Though the development process is a long one, the world needs a larger capacity for clean energy generation, and it’s this ultimate goal that drives the Transatomic team forward. Continue reading

Designing an Environmentally Friendly Luxury Electric Vehicle with Multiphysics Simulation

Luxury Electric Vehicle

Developing a luxury electric vehicle (EV) from scratch with a short deadline demands organization and access to the right technology to get the job done. Lucid Motors of Menlo Park, California, met the first challenge by putting all the engineers in one room so the structural and aerodynamics engineers would know what the battery, motor and power electronics engineers were doing, right from the start. This collaborative environment has helped them to design a unique automobile with more passenger space by reshaping the battery stack, while optimizing the electric motor, the cooling system, the aerodynamics and the battery life.

Continue reading

How ANSYS Simulation is Helping Virginia Tech Team to Optimize Hyperloop Pod

After placing fourth at the SpaceX Hyperloop Design Weekend in January 2016, as well as the first ever Hyperloop Pod competition in Los Angeles, California, Hyperloop at Virginia Tech is working tirelessly toward improving every aspect of their pod. The Virginia Tech design team comprises over 60 people, branching out to all majors within the university, from business to aerospace engineering. We currently follow a tick-tock engineering cycle, innovating for one competition, then optimizing for the next using ANSYS Simulation. Continue reading

How HPC Reduces CFD Simulation Time from Weeks to One Day

Some records are broken for glory, while others, like HPC, have more practical results. Compare 2017 Nathan’s Famous International Hot Dog Eating Contest champion Joey Chestnut’s record-breaking feat of eating 72 hot dogs (with buns) in 10 minutes during the annual July 4 contest to ANSYS, Saudi Aramco and King Abdullah University of Science and Technology (KAUST) shattering the supercomputing record by more than 5x. Chestnut was awarded the “Mustard Belt” for the 10th time, $10,000 and an additional 20,000+ calories for his impressive performance. By leveraging high performance computing, Saudi Aramco and KAUST worked with ANSYS to speed up a complex simulation of a separation vessel from several weeks to an overnight run! Continue reading

3 Ways to Boost ANSYS Performance with Intel Technologies

Intel Supercomputing 2017

ISC 2017 in Frankfurt, Germany (copyright Philip Loeper)

My visit to ISC High Performance last month in Frankfurt, Germany re-affirmed my belief that computing innovation shows no signs of slowing down. I participated in an industrial HPC user panel at the event, which has traditionally focused on big supercomputing solutions for government and research institutions. The fact that this year’s ISC broke attendance records and dedicated so much time to industry sessions shows how much HPC has become entrenched in other industries.

We have been working with Intel on a few innovations that I wasn’t at liberty to discuss at ISC, but can now share with you that Intel announced its new processors and improvements to their accompanying technologies yesterday. We have been working with Intel to benchmark ANSYS software on the new technologies before their release, so that our mutual customers can immediately see what benefits they’ll receive. Here’s a sneak peek at the results. Continue reading

UC Motorsports Wins the Dynamic Event with ANSYS CFD

Each year the University of Canterbury Motorsport (UCM) team in New Zealand pushes the boundaries of what can be achieved in racing; in 2016 they overcame their greatest challenge to date. After three years (2013-2015) of competing in the Australasian Formula SAE competition with an internal combustion engine vehicle , the team decided in 2016 to design and build New Zealand’s very first four-wheel drive (4WD) electric vehicle for the competition. The results were remarkable: UCM made history by becoming the first team with an electric vehicle to win a dynamic event at the Australasian Formula SAE competition.
Continue reading

Accelerating Innovation Through HPC-Enabled Simulations

HPC Ferrari RacesMany engineers are using powerful simulation software but are still not deploying HPC to the full extent. Case in point, I presume most of you have heard about the 24 Hours of Le Mans race. There is one starting June 17. I find it very exciting, not least because teams of three drivers per car compete to complete the most laps around the 13.629-km Circuit de la Sarthe in 24 hours! The race cars reach more than 320 km/h on the straightaway, spending most of the 24 hours at full throttle.

Imagine the roar of the engine drowning out the cheers of the crowds as you speed smoothly around the track in a finely tuned (thanks to simulation) race car. Now imagine the track is a country road or dirt road, not so smooth or speedy now, is it? Continue reading

ANSYS HPC: On to a Million Cores!

ANSYS CFD is on the verge of a second renaissance in high-performance computing (HPC). The first, spanning more than a decade, has seen tremendous leaps in both the depth and breadth of HPC capabilities. Depth (or heights, rather) in the size of the scalable clusters — first 1000s, then 10K, and recently 100K core counts — and breadth of coverage across solvers, physics, post-processing, even file I/O, covered the gamut of high-performance simulations. The trend, in fact, is exponential, as evident in this chart, and spans many years of ANSYS Fluent software releases. While there are other impressive scientific scalability demonstrations, ANSYS Fluent set the standard for industrial HPC CFD simulations. Continue reading

Formula Motorsports: Accelerating Race Cars through Simulation

UWashington Formula Motorsports is a student-organized team that competes in Formula SAE. We design, build and test two small, formula-style race cars for the competition: one combustion and one electric. Each year we compete nationally and internationally at Formula Student Lincoln and Formula Student Germany. Everything our club produces is done entirely in-house. We produce our own designs, perform our own machining, and manufacture our own carbon fiber parts. Through the entire design process, UWashington Formula Motorsports strives to validate design decisions with sound engineering methods, and the simulations we run using ANSYS make this possible. Continue reading

Earth-to-Space Delivery Services℠ Faster and Affordable with ANSYS Simulation

earth to space delivery systemsThe rapid surge in consumer demand for mobility, connectivity and content has fundamentally changed the space industry. Space, as the ultimate vantage point, is a necessary destination to connect 55 percent of the world that does not have access to the internet. With miniaturization of technologies, capabilities that until now required large satellites the size of a bus with a billion-dollar price tag are being challenged by small satellites that are 12 inches long and weigh only 9 pounds. When constellations of 24 to 800 of these small satellites are established in low Earth orbit, the world will enjoy global WiFi, maritime connectivity, real-time navigation maps, precise weather forecasts, virtual reality in space and more. Continue reading