Simulation Innovations: From Systems Simulation to Autonomous Vehicles to Digital Twins

The role of 3-D physics, systems simulation and embedded software is expanding rapidly into new industries and disciplines. A few years ago, 3-D physics simulation was limited to specific departments within organizations, and often these departments did not coordinate with each other on product development activities. Fast forward to today, and much has changed and must continue to evolve in order for companies to remain competitive in the changing landscape of product development. Integrated 3-D physics, systems simulation and embedded software tools are of the utmost importance — especially when tackling the challenges of quickly and accurately developing the technology driving digital twins and autonomous vehicles.

Join us in Paris for our Innovations Conference on December 5-6 and learn how our customers are using simulation to bring their products to market faster.

Continue reading

Using Realistic Bulk Material Loads in ANSYS for Optimized Equipment Design

When designing heavy equipment such as bucket loaders, truck bodies and diggers, finite element analysis tools, such as ANSYS, are a ‘must-have’ in any design engineer toolkit in order to assess the structural integrity of designs and ensure their durability and performance. But while FEA will provide engineers with a wide range of tools for setting up meshes, joints, and boundary conditions, there is one thing missing in this analysis: the bulk material itself that the machine is supposed to handle! DEM (Discreet Element Method) offers additional capabilities to account for bulk materials.

Continue reading

How HyperXite Used ANSYS Simulation to Advance in the Hyperloop Competition

The Hyperloop from SpaceX is the future of fast, affordable and sustainable transportation.  HyperXite, our team from the University of California, Irvine, which is competing in the SpaceX Hyperloop Pod Competition, is using ANSYS Fluent and ANSYS Mechanical simulation solutions to design and build a 1:2 scale Hyperloop pod.

If successful, the pod eventually will be able to transport 840 people between Los Angeles and San Francisco at 760 mph while floating on a cushion of air. Of the 120 teams in the competition, we were the only team in the top five at SpaceX design weekend to propose air levitation as our driving force. Continue reading

How to Approach Topology Optimization in ANSYS AIM 18.2

Topology optimization has been around for last 20-25 years, however only recently got more attention due to improvements made in additive manufacturing and 3D printing processes (DMLS (DMLM), EBM, SLM, SLS). More importantly, simulation driven topology optimization is rekindled due to more cost effective availability of almost infinite compute capacity in the form of GPUs, TPUs and cloud which makes it easier than ever to iterate over design choices. Modern topology optimization is mixed with machine learning to learn aesthetic styles and further complement the design by volumes of simulation.

ANSYS took its first step in ANSYS 18.0 in the context of ANSYS Mechanical and now it is expanded to the designer community through ANSYS AIM addressing primarily two key issues: abstracting the mechanics of simulation with eager program controlled setup followed by embedded experience with automated geometry reconstruction. You can organically design parts from a single block of material or improve an existing design, both workflows are fully supported and where possible automated. Continue reading

Topology Optimization in ANSYS 18.1 – Motorcycle Component Example

If you’re not familiar with topological or topology optimization, a simple description is that we are using the physics of the problem combined with the finite element computational method to decide what the optimal shape is for a given design space and set of loads and constraints. Typically our goal is to maximize stiffness while reducing weight. We may also be trying to keep maximum stress below a certain value. Frequencies can come into play as well by linking a modal analysis to a topology optimization.

Why is topology optimization important? First, it produces shapes which may be more optimal than we could determine by engineering intuition coupled with trial and error. Second, with the rise of additive manufacturing, it is now much easier and more practical to produce the often complex and organic looking shapes which come out of a topological optimization. Continue reading

Powering Devices with Vibration

Vibration in terms of simulation, for me at least, immediately makes me think of vehicles and larger structures: ride comfort in cars, the incredible forces caused by vibration that equipment on rockets see and rotating machinery. These are all obvious areas that our customers use simulation to help understand the effects of vibration. It seems that designers of much, much smaller devices are also very interested in vibration.

vibration power generation

Continue reading

3 Ways to Boost ANSYS Performance with Intel Technologies

Intel Supercomputing 2017

ISC 2017 in Frankfurt, Germany (copyright Philip Loeper)

My visit to ISC High Performance last month in Frankfurt, Germany re-affirmed my belief that computing innovation shows no signs of slowing down. I participated in an industrial HPC user panel at the event, which has traditionally focused on big supercomputing solutions for government and research institutions. The fact that this year’s ISC broke attendance records and dedicated so much time to industry sessions shows how much HPC has become entrenched in other industries.

We have been working with Intel on a few innovations that I wasn’t at liberty to discuss at ISC, but can now share with you that Intel announced its new processors and improvements to their accompanying technologies yesterday. We have been working with Intel to benchmark ANSYS software on the new technologies before their release, so that our mutual customers can immediately see what benefits they’ll receive. Here’s a sneak peek at the results. Continue reading

Free Download – New ANSYS Student Product Downloads Released

Who was it that said “Nothing in life is free?” Whomever it was, they were wrong. There are a ton of amazing things in life that are free — including our ANSYS Student Version products! Speaking from experience, there has never been a time I have appreciated something free more than when I was a student working my way through college.

In late 2015, we launched our ANSYS Student free download, and since then have released several updated versions. Just recently we made some exciting changes with our new Student Product page boasting two new ANSYS Student Products for Windows x64: ANSYS AIM Student 18 and ANSYS Student 18. Both are now renewable, 12-month product licenses with a shorter and simpler download process. Best of all, we’ve eliminated the need for you to fuss with a separate download key! Continue reading

Digital Prototyping for More Powerful Pumps

Routine maintenance of sewer pipes is necessary to prevent clogging, cracking and failure in the long run, saving sewage companies considerable time and money. FMC Technologies, which makes reciprocating pumps used to force water at high pressure through sewage pipes to clean them, turned to engineering simulation to design their latest product when customers began demanding smaller, lighter pumps with a higher output pressure. These pumps would be easier for the operator to move and place for optimal operations in the field. Also, reducing size and weight would make the pumps less expensive to purchase, easier to maintain and more energy efficient.

sewer pipe

Continue reading

Accelerating Innovation Through HPC-Enabled Simulations

HPC Ferrari RacesMany engineers are using powerful simulation software but are still not deploying HPC to the full extent. Case in point, I presume most of you have heard about the 24 Hours of Le Mans race. There is one starting June 17. I find it very exciting, not least because teams of three drivers per car compete to complete the most laps around the 13.629-km Circuit de la Sarthe in 24 hours! The race cars reach more than 320 km/h on the straightaway, spending most of the 24 hours at full throttle.

Imagine the roar of the engine drowning out the cheers of the crowds as you speed smoothly around the track in a finely tuned (thanks to simulation) race car. Now imagine the track is a country road or dirt road, not so smooth or speedy now, is it? Continue reading