Learn About the Many Innovative Features of ANSYS 18

I’m excited and honored to share with you the innovations in the latest release of our suite of simulation solutions, ANSYS 18, on behalf of over a thousand R&D professionals at ANSYS. The driving force for these innovations is the spread of simulation to all areas of engineering practice, a trend we call “pervasive engineering simulation.”

This trend is enabling engineers to explore the design parameter space earlier in the product lifecycle (digital exploration), test thousands of detailed designs rapidly and efficiently (digital prototyping), and monitor and optimize their product’s operation after it has been deployed (using digital twins).

To make pervasive engineering simulation as easy as possible for all engineers, we’ve added a lot of new features to each product family, as you can see below. For more information on ANSYS 18, including demo videos, webcasts, application briefs and technical papers, see our ANSYS 18 web pages. Continue reading

Get Up to Speed with ANSYS Training Options to #LearnANSYS

For over 40 years, ANSYS training has been a reliable partner for engineers to increase their productive use of ANSYS software. With tight deadlines and demanding product design requirements moving CAE engineers into the spotlight, engineers are feeling the pressure to deliver accurate predictions of product performance in a timely manner, often times before a product is even built.

Project and product success ultimately hinges on the preparedness of the engineering team to perform the simulations necessary to support key engineering decisions. In an environment of evolving demands it is becoming a high priority for engineers to keep their skills current. Successful engineers therefore focus on learning more in order to stay on top and to move ahead. Continue reading

MUR Motorsports Leverages ANSYS Simulation to Win

As the winners of the Formula SAE competition Australia last year, MUR Motorsports is looking to repeat our success by designing a more aggressive aerodynamics package and optimizing the weight of the vehicle. These targets were deemed by our in-house lap simulator to be two of the driving factors for winning the F-SAE Australasian competition in December. To effectively manage our workload and streamline the design process, we used ANSYS simulation software in almost all of our subteam’s design processes. Continue reading

Submodeling: Simple Solutions for Large-Scale Problems

If you’re an engineer who has dealt with large simulation models, you know there’s often a trade-off between accuracy and solution time. Submodeling is a technique you can use to reduce solution time without sacrificing accuracy of results.

A common strategy you can use to look at the overall behavior of an assembly or complex part of a large model is to simplify the model during preparation by removing small details, like fillets and holes. Simplifying models in this way can have a significant impact on run times. This simplification, while not excessively affecting overall model stiffness, may result in lower resolution of localized stresses. What you need, then, is a mechanism that allows you to “zoom in” on these details to examine behavior around specific areas.

Continue reading

Importing ECAD Trace Data for Better Thermal and Vibrational Analysis

Many of our customers are reaping the benefits of the trace import functionality in ANSYS Mechanical, which accounts for the effects of copper distribution on every layer of a printed circuit board (PCB) — or printed circuit board assembled (PBA) — for your thermal stress analysis, modal, shock and random vibration simulations. Just think — you can capture the accuracy necessary to confidently make engineering decisions in a fraction of the time you are currently spending on lumped parameter models. In this post, I’ll give you a brief overview and explanation of the process. Continue reading

SGI and ANSYS Achieve New World Record in HPC

Looking back at the past couple of years of extraordinary joint engineering projects SGI and ANSYS have undertaken, it is clear to me that when a synergetic hardware and software partnership is established you, our joint customers, are the clear beneficiary. To that end, I would like to walk you through four such examples.

The first example was outlined over a year ago in my ANSYS guest blog, “Solving the Impossible Electromagnetic Simulation with HPC” where with a “grand challenge” benchmark we jointly demonstrated that the SGI® UV platform and ANSYS HFSS software could solve very large, high frequency electromagnetics problems like cosite analysis and radar cross section (RCS) analysis, as well as allow multiple frequency sweeps to be run without running out of computer system memory. Continue reading

BorgWarner Goes Full Speed with ANSYS HPC Parametric Packs

It doesn’t matter what car you drive — it could be a snazzy Ferrari or a humble FIAT Punto — ultimately what we’re all looking for is a car that performs well and maybe saves us a little money at the pump.

The upcoming joint ANSYS-ESTECO webinar on September 15th will discuss just how important a single component, in this case, a tensioner arm, can be. Chain tensioner arms may not be as well known as pistons and gearboxes, but, by maintaining the correct amount of tension on the chain at all times throughout its duty cycle, they are important for reliable operation of the accessory chain drive system. The chain tensioner also helps protect other components, such as the alternator and water pump, from undue stress and premature failure. A well-designed chain tensioner can also help boost engine performance and efficiency. Continue reading

3 P’s of Structural Analysis

I’ve been involved in engineering simulation for 20 years. Not quite sure exactly how that happened, but none-the-less here we are. Back in 1996, when I was studying engineering, a good part of my course looked at the fundamentals of FEA for structural analysis and CFD for flow simulation. We spent an inordinate amount of time manually calculating how a five-element beam would behave. I dread to think how many trees were sacrificed at the expense of my scruffy algebra.

I learned two key things from this exercise. FEA was incredibly useful —I could get an engineering answer to a reasonably realistic problem by using this approach — and that FEA software was a must if I wanted to do this on a more meaningful model. Continue reading

Advanced Mesh Morphing in ANSYS Mechanical

It is a great pleasure to guest blog for ANSYS again after my post in 2014 entitled Reshaping the Future of CFD Using Mesh Morphing. We continue to increase our commitment to deliver the high-performance mesh morphing technology of RBF Morph and began our new product project at the beginning of 2014.

We presented the first industrial applications at the Automotive Simulation World Congress in Tokyo in October 2014, and officially launched the RBF Morph ACT Extension on the market at the ANSYS Italian UGM in May 2015. At the end of 2015, we posted a free version (with limited functionality) in the ANSYS App Store. Continue reading

10x More Reliable Electronic Systems

Reliable Electronic SystemsOn the 18th of February, we’re hosting a webinar showcasing some exciting new methods to increase the number of ways reliable electronic systems can be designed. You can register now but first let me tell you a little about why it’s important.

The proliferation of electronics into every product arena can’t be denied. Electronics bring huge benefits in terms of features and functionality to pretty much any device. This means that electronics are being placed in more varied environments — and subjected to more demanding loads — than ever before. Continue reading