Closing the Loop on Medical Device Systems Simulation: An Insulin Delivery Systems Example

Great products are composed of great individual components that are increasingly assessed from every possible physical perspective. But as you probably know, optimally designed components do not necessarily result in optimal systems. Eventually, the components are assembled, powered, sensed and controlled as an integrated system, and must therefore be simulated as a system to meet peak performance requirements and stringent safety standards. But building and testing integrated product systems and subsystems can be costly and may not identify optimal configurations and/or potential shortcomings. Systems simulation can help to overcome this challenge. Continue reading

The Role of Engineering Simulation in Energy Innovation

engineering simulation energy innovationA few weeks ago, I had the honor and privilege of being one of a few invited attendees at the DOE Mission Innovation Workshop on Grid Modernization. The workshop was hosted by the University of Pittsburgh and held at the Energy Innovation Center. Attendees included leaders from the Department of Energy, Pittsburgh city government officials, community and foundation organizations, and representatives from key local industries — including major utilities, electrical system integrators, electrical system manufacturers and technology companies (like ANSYS).

Pittsburgh, and other similar cities, face significant energy and sustainability challenges over the next few years. These challenges stem primarily from the significant disparity in the goals that have been set — as can be seen in the SmartPGH video — and the current state of the grid and industrial equipment. Continue reading

Wireless Power Transfer (WPT)

Wireless power transfer (WPT) is much researched and discussed in the context of IoT, electric vehicles and mobile electronic devices. The methodology of powering a device without a physical connection is well known. However, designing the coil shapes and their placement, maximizing efficiency and validating behavior at the system level still represent challenges that cannot be achieved without simulation. The next frontier to be explored is extending and applying wireless power transfer systems to more applications, such as continuous charging of multiple devices, increasing the range of efficient power transfer and ensuring the WPT system design meets regulatory guidelines. Continue reading

Virtual Systems Prototyping with Modelica in ANSYS Simplorer

Last summer, we shared with you some of the advances in ANSYS 16.2 as they related to virtual systems prototyping, including how you can optimize your product development process and improve collaboration among different departments and disciplines. I’m happy to let you know that we’ve continued to enhance our systems offering with the latest release of ANSYS Simplorer in ANSYS 17.0.

modelica logoI’m personally most excited about the native support for Modelica in this new version of ANSYS Simplorer. Why? ANSYS Simplorer users will be delighted to know that you can create and assemble models faster than ever using Modelica models. Native support for the Modelica language allows you to import Modelica models directly into Simplorer. New library components provide access to hundreds of additional mechanical and fluid component models for complex electrified systems. Continue reading