ANSYS Fuels Nature-Inspired 3-D Printing

Nature is full of amazing materials. Wood and bone, for example, are natural composites with finely-tuned microstructures. They have optimized fiber alignment for enhanced strength. At Fortify — an additive manufacturing startup — we wondered if harnessing the power of natural composites in 3-D printing could help us to create high-performance end-use parts.

Our observations of the natural world led to the development of our fluxprint technology, which utilizes magnetic fields in a 3-D printer to align carbon fibers throughout a printed composite part. This process results in high-performance components with high-geometric complexity and incredible strength-to-weight ratios. Continue reading

Cloud is Leveling the Playing Field for Technology Startups

A technology startup faces a great deal of challenges: funding, hiring, office space, manufacturing, messaging, legal, software, and infrastructure, to name a few. CEOs can feel overwhelmed by the sheer size and complexity of the puzzle that is establishing a successful corporation. It only takes one of the pieces to fail to jeopardize the whole enterprise. The stakes are high.

One area of investment that is particularly expensive and difficult to get right for hardware startups is the engineering simulation software and high performance computing (HPC) infrastructure required for virtual prototyping and testing. Rescale and the ANSYS Startup Program offer solutions for startups with on-demand and fully scalable software and hardware that require zero in-house IT.

Rescale and the ANSYS Startup Program are partnering to offer a scalable,
zero-IT simulation solution to startups

Continue reading

Improving Smoked Food with Simulation

Smoking meat (and other food) in a barbecue smoker doesn’t sound complicated, but there are more factors at work in producing delicious food than you would expect. Barbecue enthusiast Travis Jacobs, president of Jacobs Analytics, was aware that in windy conditions the air flow through the bottom inlets and the top outlet vents of a smoker can be variable, leading to internal temperature gradients and swirling air that removes smoke and makes a less savory product. He wanted to make a smoker that could smoke food to perfection in any conditions. Unlike most of us non-engineer weekend barbecuers, he turned to computational fluid dynamics (CFD) simulations to solve this problem.

Continue reading

Powering Devices with Vibration

Vibration in terms of simulation, for me at least, immediately makes me think of vehicles and larger structures: ride comfort in cars, the incredible forces caused by vibration that equipment on rockets see and rotating machinery. These are all obvious areas that our customers use simulation to help understand the effects of vibration. It seems that designers of much, much smaller devices are also very interested in vibration.

vibration power generation

Continue reading

Simulation Used to Spur Design Development for Nuclear Power

Nuclear power is a key player in the future of clean energy, and multiple companies are pursuing new technologies to maximize nuclear’s contribution to the clean energy space. Founded in 2011 and based in Cambridge, MA, Transatomic Power is an advanced nuclear technology startup developing and commercializing a molten salt reactor (MSR), or a nuclear reactor whose fuel is in liquid, rather than solid, form. This technology, originally developed at the Oak Ridge National Laboratory (ORNL) in the 1960’s, offers multiple safety and cost benefits over traditional nuclear reactors, in which the fuel is in the form of solid pellets cooled by water.

Tranatomic’s MSR design builds on the original work at ORNL and adds a few innovative new features that reduce the reactor’s size and, as a result, it’s cost – a huge factor in building new nuclear power plants. Though the development process is a long one, the world needs a larger capacity for clean energy generation, and it’s this ultimate goal that drives the Transatomic team forward. Continue reading

PowerCone™ Wind Turbine Development Accelerated with Simulation

Artist rendering of the PowerCone

The journey of BiomeRenewables’ PowerConeTM wind turbine started with witnessing a falling maple seed. I was sitting on my deck when I was struck by how slowly the seed was able to fall. As it turns out, maple seeds — for their size — exhibit maximum aerodynamic efficiency; they are able to hit what is known as the Betz Limit — 59.3 percent aerodynamic efficiency. Careful analysis revealed that there is something about the seed’s shape and the way it interacts with the air that allows it to achieve such high efficiency numbers — namely, that it interacts with the oncoming flow at an angle greater than 90 degrees. This is not the case with modern wind turbines, which interact with the wind at perpendicular angles of 90 degrees. Continue reading

Wireless Charging Design in Wearables Using Simulation

Working for ANSYS gives me incredible opportunities to work with innovative companies and learn about the latest technologies that are being developed to improve our lives. One of the intriguing companies I have had the pleasure to work with is RF2ANTENNA. RF2ANTENNA works on developing innovative and easy-to-integrate products for specific applications in wireless communications and wireless charging, with the goal of improving the efficiency of IoT devices with affordable solutions. Their core competency is in providing solutions to radiation problems in mobile products. The ANSYS Startup Program has given them the opportunity to take their work to the next level. Continue reading

Lightening the Load with Composites and Digital Prototyping

Airlines and aircraft manufacturers are doing everything they can to lower their costs, including lightweighting every component possible, which can improve fuel efficiency. The industry spends more than a hundred billion dollars on fuel every year. While the price of oil is relatively low today, manufacturers and airlines must look ahead to the more than 25-year life span of the average airplane, assuming someday prices will rise again. Cost is a major driver, but the industry is also committed to reducing emissions during flight, and reducing fuel burn from the engine helps achieve this goal. Lightweighting, then, is one of the most important trends in the aerospace industry, and using composites, that can offer the required strength but at lower weight than metals, in manufacturing is a key strategy.

aircraft cargo area

Continue reading

Antenna Industry is Being Revolutionized Through the Simulation of Metal 3-D Printed Antennas

Recent advances in 3-D printing with metal have advanced to the point where antennas and RF components can be consistently fabricated with excellent performance in the millimeter wave frequencies. Optisys is a startup based in Utah that is focused on using the most advanced simulation tools to design antennas and radio-frequency (RF) components that could not have been fabricated a few years ago. The use of 3-D printing an antenna creates orders of magnitude reduction in size, weight, and lead time. These savings are enabled through a key partnership with the ANSYS Startup Program. Continue reading

Hang Gliding Takes Quantum Leap with Simulation

hang gliding simulation side viewSince its creation, hang gliding has progressed solely — and often painfully — through experimentation. But engineering simulation is starting to change that.

The German inventor and flight pioneer Otto Lilienthal made over 2,000 flights as long as 820 feet in gliders he designed and flew in the 1890s. He died in 1896 from injuries sustained in a glider crash, but his well-documented accounts of theories and experiences with flight influenced many of the early aviation pioneers, including the Wright Brothers. Continue reading