Turbomachinery and Pump Symposia: Industry Consolidation

Industry consolidation was one topic of discussion as my colleague-in-turbomachinery Bill Holmes and I and recently returned from the Turbomachinery & Pump Symposia. The event is organized by the Texas A&M University Turbomachinery Laboratory and held at the George R. Brown Convention Center in Houston Texas. Only a few years back the pump and turbomachinery shows were separate. With the amalgamation one is now able to view a large array of impressive hardware and attend informative technical sessions applicable to the full range of equipment: pumps, compressors, turbines, fan, blowers and all related components and services. The emphasis is on Oil & Gas machinery, although not exclusively as there are synergies with power generation, chemical process, air separation etc. Continue reading

Six Myths of High-Performance Computing

six myths of high performance computingLooking back at my notes from conversations with many engineers during our recent ANSYS Convergence Conferences, I must admit that I still came across some myths and misconceptions about high-performance computing (HPC) for engineering simulation. Let me share six really striking ones with you:

  1. HPC is available on supercomputers only
  2. HPC is only useful for CFD simulations
  3. I don’t need HPC – my job is running fast enough
  4. Without internal IT support, HPC cluster adoption is undoable
  5. Parallel scalability is all about the same, right?
  6. HPC software and hardware are relative expensive

Continue reading

Using CHEMKIN Simulation Software for Complex Chemical Processes

As a new member of the ANSYS family, via the Reaction Design acquisition, I thought I would take the opportunity to give you a little background on the product line I represent — CHEMKIN.

The software had its beginnings at Sandia National Laboratories, as part of the U.S. Government’s response to the oil crisis of the 1970s. Scientists at Sandia began studying how to make more efficient, cleaner-burning engines, and they created software to simulate the complex molecular-level chemical reactions that take place during fuel combustion. In 1997, Reaction Design licensed that software from Sandia and evolved the technology into a commercial-quality software suite that enables engineers and scientists in microelectronics, combustion and chemical processing industries to develop a comprehensive understanding of chemical processes and kinetics. Continue reading

Using ANSYS for Doctorial Research in Cardiovascular Engineering

As a Marie-Curie fellow, I have obtained my PhD degree at University College London (UCL) under the supervision of Dr Vanessa Díaz. Together with twelve other Marie-Curie fellow students, I have been a member of the European project “Medical Devices and Design in Cardiovascular application” (MeDDiCA). Located in the UK, Italy, France, the Netherlands and Romania we each conducted our research in the field of cardiovascular engineering. Continue reading

Reshaping the Future of CFD Using Mesh Morphing

A cool title, isn’t it? Hello ANSYS blog readers! This is my first time in this blog as a guest blogger. You will notice a brief resume of mine together my photo as the author of this post, but let me introduce myself so that you can understand why I am here writing about mesh morphing to the ANSYS audience.

I am a Professor at University of Rome, with good experience in fluid structure interaction (FSI) and Fluent customization using UDF programming. Five years ago, driven by a Formula 1 Top Team, I developed a powerful mesh morphing tool crafted by tough specifications. Managing any kind of mesh, precise, fast and parallel! Nothing at that time was able to do this kind of job. We tried to go with (RBFs) Radial Basis Functions mesh morphing, one of the most promising techniques. And we made it. Continue reading

Powerfully Pragmatic Problem-Solving with CFD

The art of engineering can often be in finding pragmatic ways to use technology to solve real problems. While simulations may include an ever-increasing amount of geometric detail, it is not enough to simply generate ever finer meshes and use ever smaller time resolution. Simulations must still be solved in a reasonable time (and perhaps the one constant here has been that reasonable almost always means ‘overnight’). Therefore, until there is a dramatic breakthrough in computing power, modeling fluid flow will require engineering pragmatism in problem-solving for many years to come. But that need not be shouldered by the CFD engineer alone — ANSYS simulation software can support them in their efforts. ANSYS 15.0 contains multiple examples of how pragmatic approaches to efficient and effective simulation are contained in the software itself.

One such example is the dynamic combustion mechanism reduction capability in ANSYS Fluent. By automatically reducing the mechanisms to only the most important, dramatic reductions in simulation time can be achieved without the CFD engineer having to spend time and effort determining how to represent complex reaction mechanism in a simplified manner that models the behaviour sufficiently well. Instead, this pragmatism is built into the ANSYS software! Combined with further enhancements in ANSYS 15.0, it makes combustion simulation with even the most involved chemical reactions viable. Continue reading

Witnessing Engineering Simulation in Action

During the last few weeks, I had the opportunity of a lifetime to witness two competitive sport clients race with machines that were developed using ANSYS fluid dynamics engineering simulation tools. I can guarantee you that I was like a kid in candy store!

Emirates Team New Zealand - America's Cup

In September, I was on vacation in San Francisco to see the America’s Cup and had the chance to see Emirates Team New Zealand race. As you might recall, they won the Louis Vuitton Cup — but unfortunately not the America’s Cup. Even so, seeing those monsters race on the SF Bay was phenomenal. What a spectacle! Amazing sailing, impressive engineering.

Emirates Team New Zealand - San Francisco Bay

These are just a couple of the photos I took at the event. One shows the boat after the race. I thought it was a cool picture because it showed how massive it is. The other shows the actual wing.

If you want to know more about the America’s Cup and fluid dynamics simulation, please listen to the designer team of Emirates Team New Zealand talk about it here. Continue reading

ANSYS Congratulates the Emirates Team New Zealand

emirates team new zealand

Courtesy Emirates Team New Zealand

ANSYS congratulates Emirates Team New Zealand for winning the Louis Vuitton Cup for the second time!

Never heard of the Louis Vuitton Cup sailing race? You may have heard of the America’s Cup, the oldest active trophy in international sport. If you haven’t, the America’s Cup is a sailing race where a challenger yacht races one-to-one against the current holder of the America’s Cup. The challenger team has earns this position by winning the Louis Vuitton Cup. Continue reading