RBF Morph makes ANSYS Fluent more Flexible in RIBES Clean Sky Project

Way back in 2005, I co-authored a paper for the Fluent News magazine titled “FSI Makes Fluent More Flexible.” Now I’m here to talk about how RBF Morph makes ANSYS Fluent more flexible In RIBES Clean Sky Project and in ways that you can use to make your simulations more efficient.

In the 2005 paper my colleague and I wrote: “Fluid-structure interaction (FSI) is an important and interesting phenomenon, but it is a difficult challenge for numerical modeling. It even poses difficulties for numerical modelers. Structural behavior is a troublesome boundary condition for the CFD analyst, who prefers to assume that boundaries are rigid. The structural analyst, on the other hand, would like to assume that fluid inside or outside a structure merely generates a constant pressure on the walls.”

Thirteen years later, our computational tools have evolved; FSI is now a challenge that we can tackle. Multiphysics simulations, while still complex, are becoming more common in many fields. They are being made easier with enhancements like the advanced mesh morphing technology in RBF Morph, which can embed structural modes in Fluent to make the CFD model flexible. In this case, flexibility refers to the model’s ability to elastically deform under CFD-computed loads.

Image of the Piaggio P1XX

Advanced mesh morphing technology solves fluid-structure interaction (FSI) challenges. Shown here: the Piaggio P1XX.

Continue reading

Airfoils Don’t Fly, Aircraft Do: Why In-flight Icing Certification Benefits from CFD

If you travel by plane during the winter, you are used to the de-icing process: The jet taxis to the de-icing station, where technicians spray the it with chemicals to remove any ice that may have built up while it was sitting on the ground. That’s standard procedure. But what about ice that forms when the plane is flying at high altitude in the cold air? Is that ice dangerous, and can the buildup be predicted to avoid problems in-flight?image of airfoils on an aircraft Continue reading

Fluid Dynamics are Engineer Ready in ANSYS 19.0

In early January, I spent two jam packed days in a room with over 60 of our best and brightest to exchange CFD best practices and learn what’s new for fluid dynamics in ANSYS 19.0. These are ANSYS Customer Excellence (ACE) team CFD engineers who work with you, our customers, to set up and solve the toughest simulation problems. In prior years, the presentations have focused on the latest physical models and capabilities. Certainly, those were represented. But this fluid dynamics technical meeting was predominantly about you, the engineer — discussing how to reduce risk  to provide the answers you need with the minimum investment of time and resources.

image of ANSYS summit participants learning ANSYS Fluids 19.0

The ANSYS Fluids Team

Continue reading

7 Examples of Engineering Simulation Excellence Added to the ANSYS Hall of Fame

It always astounds me what our ANSYS customers accomplish with our software. Applying Pervasive Engineering Simulation, engineers, designers and students from organizations around the world and across a vast array of industries submitted a large number of innovative entries to be considered for the ANSYS Hall of Fame. It was very difficult for our judges to pick the winners among such great examples of engineering excellence.

Here are the winners of the 2018 ANSYS Hall of Fame Competition.

Continue reading

Free Performance Benchmark Program

Whenever I speak to our customers who want to run our software on something more powerful than their desktop computers, I hear the need for quantitative proof of HPC benchmark tests. If you have the same need, you can now get that proof, and it won’t cost you a thing.

We’ve established a Free Performance Benchmark program. Instead of demonstrating evidence of the benefits of HPC on standard benchmark models, we want to show you the time savings that HPC can make possible for your very own model. Continue reading

Improving Smoked Food with Simulation

Smoking meat (and other food) in a barbecue smoker doesn’t sound complicated, but there are more factors at work in producing delicious food than you would expect. Barbecue enthusiast Travis Jacobs, president of Jacobs Analytics, was aware that in windy conditions the air flow through the bottom inlets and the top outlet vents of a smoker can be variable, leading to internal temperature gradients and swirling air that removes smoke and makes a less savory product. He wanted to make a smoker that could smoke food to perfection in any conditions. Unlike most of us non-engineer weekend barbecuers, he turned to computational fluid dynamics (CFD) simulations to solve this problem.

Continue reading

The EnSight CFD Simulation Post-Processing Story: Like a Multi-Stage Rocket

EnSight, the leading post-processor for Computational Fluid Dynamics (CFD) data is now part of ANSYS. In the two decades since its launch, EnSight has taken off like a multistage rocket. Here is the story.

I grew up in that magical era when NASA used multi-stage rockets to carry Apollo astronauts to the moon and back. As a toddler I learned to count backwards from 10, 9, 8, 7, 6 … because that’s what I heard Mission Control say. I dreamt of being an astronaut, studied aerospace engineering and started my career at NASA’s Johnson Space Center in Houston, Texas. I met my lovely wife there, blocks from the NASA gates. Her parents still live next door to Buzz Aldrin’s Apollo era house. I used to store my lunch in the Mission Control fridge while working on my space shuttle aerodynamic simulations in the support room next door. So maybe it’s natural for me to think in rocket terms. Continue reading

ANSYS 18.2 Enhances Simulation Speed and Accuracy

ansys 18 2We continue to expand upon our best-in-class products and platform, and deliver on the Pervasive Engineering Simulation vision, with this week’s release of ANSYS 18.2. This latest release brings increased levels of accuracy, speed and ease-of-use — spurring more engineers to use simulation across every stage of the product lifecycle to design cutting-edge products more efficiently and economically.

More companies are turning to simulation to drive increasingly rapid and innovative product development and gain deeper insight into product design.

“Our customers rely on ANSYS engineering simulation technology to cut costs, limit late-stage design changes, and tame the toughest engineering challenges. This latest release continues to build upon the industry’s most accurate simulation portfolio, offering enhanced speed and accuracy – enabling more users, no matter their level of experience, to reduce development time and increase product quality.” said Mark Hindsbo, ANSYS vice president and general manager.

Highlights of the release include: Continue reading

Structural Simulation Delivers Modular Wi-Fi Towers Quickly

Wi-Fi access today seems more like a right than a privilege. But easy access to Wi-Fi is not widespread in many countries, especially in out-of-the-way rural areas where structural design and building of Wi-Fi towers can be challenging. In the interior of Brazil, only 22 percent of the people have Wi-Fi due to the costs of installing towers and the economics of providing service to sparsely populated areas. But startup Jet Towers is trying to remedy this situation using ANSYS AIM for structural simulation to design prefabricated, modular truss towers that can be installed and running within a week of purchase, instead of the normal five weeks for custom designed Wi-Fi towers.

Simulation helps design Wi-Fi towers

Continue reading

CFD Helps Design Marine Vessels to Withstand Extreme Waves

Most of Brazil’s offshore resources are in deep waters so Petrobras has fostered substantial expertise to develop these fields. One area of importance is the design of marine vessels to withstand the extreme waves. While the discovery of 50 billion barrels of oil in recent decades has been a boon to Brazil’s economic outlook, the location of the oil has produced challenging engineering problems. Lying hundreds of kilometers offshore under up to 3,000 meters of seawater, 2,000 meters of rock and 2,000 meters of salt, the oil reserves are some of the most difficult to access on Earth. Engineers are systematically using best design practices and computational fluid dynamics (CFD) to increase the safety of marine structures and vessels used to drill and produce oil from Santos Basin fields.

CFD simulation of an FPSO in extreme waves marine vesselsComputational fluid dynamics simulation of an FPSO in extreme waves.

Continue reading