Proprietary ANSYS App Optimizes Duct Flow and Pressure

Effective design for almost any kind of product, from consumer goods to industrial equipment, requires taking a large number of factors into account. By making appropriate trade-offs using simulation for digital exploration and optimization, companies can quickly develop efficient and reliable products.

For example, industrial gas turbines burn gas to turn rotors to produce electricity, with substantial amounts of hot exhaust gases as a byproduct. Instead of just warming up the surrounding air, the heat contained in exhaust gases can be put to work by capturing it and letting it flow around tubes containing water, converting the water into steam. The boiler that contains the pipes and the exhaust gases is called a heat recovery steam generator (HRSG). The steam can then flow to a steam turbine to generate more electricity.

Typical inlet duct design point analyzed as part of digital exploration

Typical inlet duct design point analyzed

Continue reading

Structural Simulation Delivers Modular Wi-Fi Towers Quickly

Wi-Fi access today seems more like a right than a privilege. But easy access to Wi-Fi is not widespread in many countries, especially in out-of-the-way rural areas where structural design and building of Wi-Fi towers can be challenging. In the interior of Brazil, only 22 percent of the people have Wi-Fi due to the costs of installing towers and the economics of providing service to sparsely populated areas. But startup Jet Towers is trying to remedy this situation using ANSYS AIM for structural simulation to design prefabricated, modular truss towers that can be installed and running within a week of purchase, instead of the normal five weeks for custom designed Wi-Fi towers.

Simulation helps design Wi-Fi towers

Continue reading

CFD Simulation of HVAC Systems on Trains Makes Rail Travel More Comfortable

Every time I travel in Europe, I enjoy riding the fast, comfortable trains. Riding from city center to city center without long security lines and tight uncomfortable airplane seats (worse for me because I’m tall!) can even make travel pleasant. But, I’ve always taken that comfort for granted. Were trains not always that way? Then, I found out about the challenges that Siemens engineers face as they design passenger coaches. Now I have huge respect for those engineers. Read on to find out how CFD is making their lives easier while giving me the comfort I love.

Siemens Ice 4 Train HVAC Systems on Trains

Continue reading

Fast, Accurate and Reliable Turbomachinery Simulation with Harmonic Analysis – Meet me at the Turbo Expo to learn more!

Transient blade row simulations in turbomachinery are needed either to improve the aerodynamic performance predictions or because the flow interaction we are trying to resolve and predict is unsteady in nature such as aeromechanical, aerothermodynamic or aeroacoustic interactions. Because the blade pitch is not similar between the rows of turbine or compressor, a transient blade row simulation will usually require the modeling of the full wheel (or full geometry). This constraint renders these simulations not practical and in many cases prohibitive as analysis or design tools. Continue reading

In-Flight Icing Simulation: 3-D CFD-Icing is Here to Stay

3-D computational fluid dynamics simulation of in-flight icing (3-D CFD-icing) has achieved considerable advances in the last decade , and many dynamic OEMs and second tier suppliers are using them to speed icing certification. Yet, others remain on the fence, using technologies from three decades ago.

inflight icing simulation

The different characteristics of ice, at different locations on an aircraft:
can that be done in 2-D?

Continue reading

Overset Mesh and CFD Simulates a Clean Room Smoke Test

clean room environmentRecent innovations in ANSYS 18 overset mesh have made it possible to use computational fluid dynamics simulations to model the smoke tests that provide useful guidance in designing clean rooms.

Ensuring Clean Rooms are Actually Clean

In the healthcare and electronics industries, process contamination is a primary concern. They manufacture these sensitive products in clean rooms where the concentration of airborne particles is controlled to specified limits. For example, a Class 100 clean room keeps particles of 0.5 microns or larger to less than 100 per cubic foot of air. Even in these controlled environments, particles are constantly being created and can settle on and contaminate surfaces and products.   Continue reading

Better Particle Erosion Fluid Dynamics Modeling in ANSYS Fluent 18

ANSYS Fluent 18 has advanced erosion fluid dynamics modeling by adding three industry-standard models to the previous default model.

Erosion wear is the loss of material due to repeated impact of solid particles on a surface and causes major economic losses across diverse industries such as oil and gas, hydraulic transportation, and chemical processes. Erosion severely damages flow passages, valves and pipe fittings, leading to higher replacement costs as well as the loss of valuable production time. For example, some oil and gas fittings can fail after just 30 minutes of operation due to high erosion rates! Engineers need to quickly evaluate the erosion on dozens of design variations to find ways of stretching the part’s lifespan in order to reduce costs and maximize process up-time.

Continue reading

ANSYS 18 Fluid Dynamics Makes CFD Simulation Practical for Every Engineer

It is hard to believe that a year has passed and it’s time to update you on what’s new for ANSYS 18 fluid dynamics. There is so much to write about and so little space in this blog!

I’m tempted to detail our breakthrough Harmonic Analysis method that produces accurate turbomachinery simulations up to 100X faster.  Or I could focus on progress with Overset Mesh that speeds and simplifies simulations with moving parts. But that is not news, that just expected.  ANSYS has been delivering new levels of accuracy and advanced modeling capabilities from the beginning. Instead, I’m going to shine the spotlight on an area you might not expect from ANSYS: Ease of use. Continue reading

Get Up to Speed with ANSYS Training Options to #LearnANSYS

For over 40 years, ANSYS training has been a reliable partner for engineers to increase their productive use of ANSYS software. With tight deadlines and demanding product design requirements moving CAE engineers into the spotlight, engineers are feeling the pressure to deliver accurate predictions of product performance in a timely manner, often times before a product is even built.

Project and product success ultimately hinges on the preparedness of the engineering team to perform the simulations necessary to support key engineering decisions. In an environment of evolving demands it is becoming a high priority for engineers to keep their skills current. Successful engineers therefore focus on learning more in order to stay on top and to move ahead. Continue reading

Design Subsea ROV Faster and Better with ANSYS CFD

The ROV, or subsea remotely-operated vehicle, is frequently used in marine operations such as underwater mapping, pipeline inspection and surveillance, sending payload, maintenance and operations on subsea oil and gas equipment such as BOP (blowout preventer) and Christmas tree assembly, which controls the oil/gas/water flow out of the well.

Underwater environments create various challenges for the manufacturers of the vehicle robotics. In addition to structure integrity under high pressure, complex underwater hydrodynamics characteristics due to coupling of motions in 6 degrees of freedom needs to be considered. Continue reading