Fast, Accurate and Reliable Turbomachinery Simulation with Harmonic Analysis – Meet me at the Turbo Expo to learn more!

Transient blade row simulations in turbomachinery are needed either to improve the aerodynamic performance predictions or because the flow interaction we are trying to resolve and predict is unsteady in nature such as aeromechanical, aerothermodynamic or aeroacoustic interactions. Because the blade pitch is not similar between the rows of turbine or compressor, a transient blade row simulation will usually require the modeling of the full wheel (or full geometry). This constraint renders these simulations not practical and in many cases prohibitive as analysis or design tools. Continue reading

In-Flight Icing Simulation: 3-D CFD-Icing is Here to Stay

3-D computational fluid dynamics simulation of in-flight icing (3-D CFD-icing) has achieved considerable advances in the last decade , and many dynamic OEMs and second tier suppliers are using them to speed icing certification. Yet, others remain on the fence, using technologies from three decades ago.

inflight icing simulation

The different characteristics of ice, at different locations on an aircraft:
can that be done in 2-D?

Continue reading

Overset Mesh and CFD Simulates a Clean Room Smoke Test

clean room environmentRecent innovations in ANSYS 18 overset mesh have made it possible to use computational fluid dynamics simulations to model the smoke tests that provide useful guidance in designing clean rooms.

Ensuring Clean Rooms are Actually Clean

In the healthcare and electronics industries, process contamination is a primary concern. They manufacture these sensitive products in clean rooms where the concentration of airborne particles is controlled to specified limits. For example, a Class 100 clean room keeps particles of 0.5 microns or larger to less than 100 per cubic foot of air. Even in these controlled environments, particles are constantly being created and can settle on and contaminate surfaces and products.   Continue reading

Better Particle Erosion Fluid Dynamics Modeling in ANSYS Fluent 18

ANSYS Fluent 18 has advanced erosion fluid dynamics modeling by adding three industry-standard models to the previous default model.

Erosion wear is the loss of material due to repeated impact of solid particles on a surface and causes major economic losses across diverse industries such as oil and gas, hydraulic transportation, and chemical processes. Erosion severely damages flow passages, valves and pipe fittings, leading to higher replacement costs as well as the loss of valuable production time. For example, some oil and gas fittings can fail after just 30 minutes of operation due to high erosion rates! Engineers need to quickly evaluate the erosion on dozens of design variations to find ways of stretching the part’s lifespan in order to reduce costs and maximize process up-time.

Continue reading

ANSYS 18 Fluid Dynamics Makes CFD Simulation Practical for Every Engineer

It is hard to believe that a year has passed and it’s time to update you on what’s new for ANSYS 18 fluid dynamics. There is so much to write about and so little space in this blog!

I’m tempted to detail our breakthrough Harmonic Analysis method that produces accurate turbomachinery simulations up to 100X faster.  Or I could focus on progress with Overset Mesh that speeds and simplifies simulations with moving parts. But that is not news, that just expected.  ANSYS has been delivering new levels of accuracy and advanced modeling capabilities from the beginning. Instead, I’m going to shine the spotlight on an area you might not expect from ANSYS: Ease of use. Continue reading

Get Up to Speed with ANSYS Training Options to #LearnANSYS

For over 40 years, ANSYS training has been a reliable partner for engineers to increase their productive use of ANSYS software. With tight deadlines and demanding product design requirements moving CAE engineers into the spotlight, engineers are feeling the pressure to deliver accurate predictions of product performance in a timely manner, often times before a product is even built.

Project and product success ultimately hinges on the preparedness of the engineering team to perform the simulations necessary to support key engineering decisions. In an environment of evolving demands it is becoming a high priority for engineers to keep their skills current. Successful engineers therefore focus on learning more in order to stay on top and to move ahead. Continue reading

Design Subsea ROV Faster and Better with ANSYS CFD

The ROV, or subsea remotely-operated vehicle, is frequently used in marine operations such as underwater mapping, pipeline inspection and surveillance, sending payload, maintenance and operations on subsea oil and gas equipment such as BOP (blowout preventer) and Christmas tree assembly, which controls the oil/gas/water flow out of the well.

Underwater environments create various challenges for the manufacturers of the vehicle robotics. In addition to structure integrity under high pressure, complex underwater hydrodynamics characteristics due to coupling of motions in 6 degrees of freedom needs to be considered. Continue reading

Smart Home Technology and Simulation Solutions

smart home technologyThe concept of the “automated home and smart home” was first introduced over 80 years ago, and has been facing different technical limitations since then.

Recently, service providers and home appliance manufacturers have launched a new initiative to bring the concept of smart homes to reality allowing subscribers to remotely manage and monitor different home devices from anywhere via smart phones or over the web with no physical distance limitations. Continue reading

Serious CFD Calls for Serious CFD Software

Computational fluid dynamics (CFD) is a tool with amazing flexibility, accuracy and breadth of application. But the tools need to be properly applied in order to deliver insight and value. Nobody starts out as an expert in CFD software. Instead, we all progress from beginners to experts over time.

For example, when I first became interested in cycling, I went shopping for a new bike. I needed something better than the old junker I was riding at the time but was a bit intimidated by cycling technology. Those small, hard saddles looked plain uncomfortable! Skinny tires! And clipless pedals were a mystery. So I ended up with a “cross” bike. Continue reading

Zyz Sailing Team Designs Using ANSYS

Zys sailing teamZyz sailing team started designing and manufacturing small sailing boats in 2008 to participate to Italian inter-university regattas called 1001velaCUP. During the first eight-year experience of the team, different boats have been launched, trying to optimize all different aspects that influence the final performance of a boat. R3 class rule adopted in this competition imposes geometrical and structural constrains to the design process: maximum length x beam of the boat is 4,60 x 2,10 m, while a minimum percentage weight for the hull constituted by 70% of plant-origin material is imposed. Continue reading