Leaping the Chasm to 7nm Semiconductor Design

Every new, smaller technology node developed in the semiconductor field has its own challenges, and the 7nm node is no exception. Usually a smaller technology node decreases price per transistor, but the cost benefits usually obtained from the smaller geometry are not as significant as in previous node changes. In fact, the increased complexity of lithography masks has made the unit cost per transistor slightly higher for 7nm devices. To offset these higher costs, products using 7nm semiconductors need higher margins, larger sales volumes and significantly higher performance than previous nodes. Achieving these goals requires designers to overcome a number of technical challenges, making upfront engineering simulation even more important than ever.7nm semiconductor design challenges

Continue reading

Avionics System Engineering: A Complex Problem Demands an Advanced Solution

avionics system engineering cockpitAs one of today’s avionics system engineers, you have a difficult task —  integrating a diverse range of functionally complex components, provided by multiple suppliers, into a system that is reliable enough  to ensure consistent aircraft performance and passenger safety. You also need to understand and meet numerous regulatory operating systems and protocols, including ARINC 653, ARINC 429, CAN and ARINC 664. Continue reading

Virtual Systems Prototyping with Modelica in ANSYS Simplorer

Last summer, we shared with you some of the advances in ANSYS 16.2 as they related to virtual systems prototyping, including how you can optimize your product development process and improve collaboration among different departments and disciplines. I’m happy to let you know that we’ve continued to enhance our systems offering with the latest release of ANSYS Simplorer in ANSYS 17.0.

modelica logoI’m personally most excited about the native support for Modelica in this new version of ANSYS Simplorer. Why? ANSYS Simplorer users will be delighted to know that you can create and assemble models faster than ever using Modelica models. Native support for the Modelica language allows you to import Modelica models directly into Simplorer. New library components provide access to hundreds of additional mechanical and fluid component models for complex electrified systems. Continue reading

10x More Reliable Electronic Systems

Reliable Electronic SystemsOn the 18th of February, we’re hosting a webinar showcasing some exciting new methods to increase the number of ways reliable electronic systems can be designed. You can register now but first let me tell you a little about why it’s important.

The proliferation of electronics into every product arena can’t be denied. Electronics bring huge benefits in terms of features and functionality to pretty much any device. This means that electronics are being placed in more varied environments — and subjected to more demanding loads — than ever before. Continue reading

Solving the Impossible Electromagnetic Simulation with HPC

solving impossible electromagnetic simulation

I was speaking with an ANSYS HFSS developer about a year ago when he mentioned they were starting to see customers who wanted to run 3-D full wave electromagnetic field simulations that would need more than a terabyte of computer system memory, something this developer hadn’t been able to do before. Continue reading

ASWC 2015 Draws Near!

After completing the first circuit of the globe, this year the Automotive Simulation World Congress (ASWC) 2015 returns to Detroit. The conference is now exactly two weeks away — to be held on June 2 and 3 — and I am really excited about it. If you haven’t registered and reserved your seat, please take a moment to register. You don’t want to miss this great event. And if you don’t know what it’s all about, read on for more information. Continue reading

Happy IoT Day !

IotDayToday marks the 5th anniversary of IoT Day. Communities around the world are hosting events that facilitate “conversations around technologies, security, data privacy and the enormous potential that an “Internet of Things” is capable of.” Why does it matter? Because the IoT connectivity boom is transforming how products are designed, delivered, serviced, and consumed. Continue reading

Systems Engineering for Smart Products

I’ve got a lot to say about Systems Engineering for Smart Products, so this is the first in a series of blogs. In nearly every industry, consumers are benefiting from the evolution of smart products. These are highly-engineered, multi-functional products that interact with people and their environments in new ways to ensure our safety, improve efficiency or reduce energy consumption. Under the hood of every smart product is a complex system (or a series of subsystems) of micro-electronics, embedded software and advanced sensor technology that have to operate in unison to measure operating conditions, predict future events, communicate with other devices, and respond to changes faster and more accurately.

Engineering these systems into a commercially viable product is far from trivial. Today’s smart products have thousands of unique requirements that need to be served by a multiplicity of subsystems and components. Each component may have hundreds of design parameters and multiple interfaces that need to be engineered, verified and validated. The endless design dimensions present opportunities for innovation, as well as for design failures, which may result in recalls, lost revenue and a tarnished corporate brand. Continue reading

A New Model Exchange Standard – The Functional Mockup Interface

Nearly every industry today deals with issues of an increasingly complex supply chain, representing interconnected relationships between OEMs, and their Tier 1, 2 and 3 suppliers. Customers who perform simulation driven product development are acutely aware of the supply chain issues, because simulation tools used by various companies are usually different and often not interoperable. This is where standards come in — modeling standards like the IEEE VHDL-AMS language provide a clear modifiable description of behavior and all tools that support this language are expected to behave the same way. However, since each tool provides its own implementation of the language compiler (typically converting from the standard modeling language to C++ code), there can be some differences in behavior. Continue reading

2013 New Year’s Resolution: Smart Simulations

First of all, I wish everyone a Happy New Year!! With the end of the old year and start of a new one, we often begin January thinking of new year’s resolutions. I plan to take on smart simulations —  instead of the usual personal development, financing management, improving interpersonal skills, etc.

Today, while I was browsing at my local bookstore, a tag line for a book caught my eye. The author described smart people as those who “… don’t do different things, they do things differently.” In the electronics industry, the trend toward miniaturization and high power density electronics is causing concerns about thermal effect on performance, reliability and user comfort. Thus, thermal management of such systems has become an essential part of the design process to optimize performance and reliability of electronic systems. The electronics simulation community and I, over the years, have simulated many such electronic systems for thermal management. Perhaps it is now time to look back and see if we modeled and simulated them smartly. Could we have followed a better best practice on modeling thermal management of electronic systems? Ask yourself: Moving forward can we “do things differently” and use these best practices to make an impact, coming up with more innovative designs and, at the same time, being more productive? Continue reading