ANSYS Webinars This Week – Nov 10

ANSYS Webinar Learning EventsThis week our ANSYS webinars line-up includes topics such as model-based systems engineering, product-related tutorials with ANSYS Mechanical and ANSYS Polyflow, as well as a very interesting look at how fluid simulation is used to better everyday life.

Our Improving Your Everyday Life webinar is a part of the Convergence Webinar Series. ANSYS customers, University of Parma and Bissell Homecare, Inc, give us insights into how they use simulation. Later in the week, researchers at Intevac and Ozen Engineering show how they simulated the fluid—structure interactions (FSI) of the human left ventricle with Hybertrophic Obstructive Cardiomyopathy (HOCM) to better understand the condition in the hope of saving lives. Continue reading

Lebanese Students Overcome Many Challenges to Build an Unmanned Aircraft

image of Lebanese American University Airplane LAU Solix

Lebanese American University Airplane LAU Solix

The Lebanese American University (LAU) challenged its students to design an unmanned aircraft capable of long flights at high altitudes. Our LAU Solix Team, comprised of eight mechanical engineering students, is very familiar with ANSYS tools and is skilled at handling CFD and fluid–structure interaction (FSI) simulations so we put these tools to work on our unmanned aircraft design. The team had to deal with the interaction that happens between fluid and structure that occurs in a wide range of engineering problems — especially in aircraft design. Continue reading

Coupling Piezoelectric and Fluid Simulations

ink jet nozzle

Ink jet nozzle

Piezoelectric devices surround us in our everyday life. Our cars and trucks contain many piezoelectric devices, including fuel level sensors, air bag deployment sensors, parking sensors and piezoelectric generators in the wheels to power the tire pressure monitoring system. Your smartphones or tablet contains piezoelectric sensors that detect the motion and orientation of the device, which my kids were using to good effect to play “Need For Speed” yesterday. Many of us have ink jet printers at home, which can use piezoelectric printer heads to eject thousands of drops per second. Continue reading

Transferring Forces from Fluent to System Coupling

A common question I hear from System Coupling users, particularly when using an operating pressure in ANSYS Fluent other than atmospheric pressure, is “Which pressure is used when transferring forces from Fluent to System Coupling and how do I change it?”.

The simple answer is that the forces passed to System Coupling are based on the gauge (or solved) pressure in Fluent by default. More accurately, the gauge pressure minus the Reference Pressure is used, but the Reference Pressure is zero by default so this is equivalent to the gauge pressure.

Before going further let’s review the Operating Pressure, Reference Pressure and gauge pressure.

The Operating Pressure in Fluent should be set to a typical absolute pressure in the system. Pressures set at boundary conditions are then specified relative to the Operating Pressure. Often the Operating Pressure is set to the absolute pressure at an outlet, and then a relative (gauge) pressure of zero is set at the outlet boundary condition(s). Continue reading

Thermal Stress Results From Your CFD Simulations

After performing a conjugate heat transfer (CHT) simulation in ANSYS Fluent or ANSYS CFX software, you may be interested in the thermal stresses generated in your model. ANSYS Workbench 13.0 makes it easy to perform this type of analysis by transferring the volumetric temperature field from your CFD solution and applying it as a body temperature load in a static structural system. Continue reading