Ensuring EMI/EMC Compliance with Electronics Simulation

Today we live in a hyper-connected world, surrounded by smart products. If industry forecasts are correct, by 2020 — just 2 short years from now — there will be over 28 billion internet-connected devices. Beyond smart phones and autonomous vehicles, smart cities, smart factories, and smart homes are also quickly emerging as promising opportunities that could help improve how we live, work and play.

While these new capabilities will be a delight to us as consumers, they are a nightmare for engineers and product designers. With hundreds of sensors, microprocessors, and wired and wireless communication components, engineers face immense challenges in ensuring reliability and performance. In the complex web of electronic circuitry, something, somewhere that is left unaddressed could lead to failure. One of the big challenges confronting product designers is electromagnetic interference, or EMI.

communication channelFull-wave model of communications channel
Continue reading

Systems Engineering for Smart Products

I’ve got a lot to say about Systems Engineering for Smart Products, so this is the first in a series of blogs. In nearly every industry, consumers are benefiting from the evolution of smart products. These are highly-engineered, multi-functional products that interact with people and their environments in new ways to ensure our safety, improve efficiency or reduce energy consumption. Under the hood of every smart product is a complex system (or a series of subsystems) of micro-electronics, embedded software and advanced sensor technology that have to operate in unison to measure operating conditions, predict future events, communicate with other devices, and respond to changes faster and more accurately.

Engineering these systems into a commercially viable product is far from trivial. Today’s smart products have thousands of unique requirements that need to be served by a multiplicity of subsystems and components. Each component may have hundreds of design parameters and multiple interfaces that need to be engineered, verified and validated. The endless design dimensions present opportunities for innovation, as well as for design failures, which may result in recalls, lost revenue and a tarnished corporate brand. Continue reading