Get Up to Speed with ANSYS Training Options to #LearnANSYS

For over 40 years, ANSYS training has been a reliable partner for engineers to increase their productive use of ANSYS software. With tight deadlines and demanding product design requirements moving CAE engineers into the spotlight, engineers are feeling the pressure to deliver accurate predictions of product performance in a timely manner, often times before a product is even built.

Project and product success ultimately hinges on the preparedness of the engineering team to perform the simulations necessary to support key engineering decisions. In an environment of evolving demands it is becoming a high priority for engineers to keep their skills current. Successful engineers therefore focus on learning more in order to stay on top and to move ahead. Continue reading

Take a Load Off! Lightweighting for Engineers

I was fortunate enough to own a Lotus Elise for a number of years. I loved that car but had to give it up when I moved to the U.S. One of the reasons I liked it so much was the design philosophy it followed: “performance through lightweight.” The reduced mass of the car meant the relatively small engine could shove it along at a fair old rate, which is pretty obvious. But it also meant that the suspension didn’t have to be as beefy, and the amount of work the brakes had to do was also significantly reduced. Lightweighting has big benefits.

It’s a very virtuous cycle. Removing weight has a compound impact on pretty much all aspects of the car. Probably one of the least mentioned benefits (considering that this was a sports car) was the fuel economy. When I was driving at a steady speed on the motorway I could easily get better economy than a family sized diesel car. Continue reading

ANSYS Videos on the ANSYS How To Channel

ansys you tubeOver the past year and a half, our team has been creating a large number of technical ANSYS videos that focus on a variety of areas. From ANSYS Electronics to ANSYS CFX, ANSYS Fluent to ANSYS Mechanical, ANSYS SCADE, and even ANSYS Student tips for those just getting started in the art of engineering simulation.

Today, I’d like to share a few of the examples you’ll find before I send you off to explore on your own. Continue reading

Zyz Sailing Team Designs Using ANSYS

Zys sailing teamZyz sailing team started designing and manufacturing small sailing boats in 2008 to participate to Italian inter-university regattas called 1001velaCUP. During the first eight-year experience of the team, different boats have been launched, trying to optimize all different aspects that influence the final performance of a boat. R3 class rule adopted in this competition imposes geometrical and structural constrains to the design process: maximum length x beam of the boat is 4,60 x 2,10 m, while a minimum percentage weight for the hull constituted by 70% of plant-origin material is imposed. Continue reading

Pay-Per-Use Licensing for Cloud Computing

ansys elastic licensingWhile considering a switch to the cloud, many of you may wonder how ANSYS licensing will work there, and more in particular, when and how we will support a pay-per-use model. I have very good news for you. Along with your existing licenses, you can use our newly announced ANSYS Elastic LicensingTM. This is a new pay-per-use licensing model unlocking virtually every ANSYS product that is supported on cloud-hosting partner hardware. Continue reading

10 Compelling Reasons to Upgrade to ANSYS 17 for Healthcare Applications

On January 27, ANSYS released its biggest version ever, ANSYS 17.0. Although the ANSYS simulation platform is renowned for its comprehensive coverage of virtually every industry through its extensive range of simulation tools, this latest release is particularly suited for the healthcare industry, whether you are modeling structural, fluid or electromagnetic applications — not to mention those of you engaged with multiphysics modeling. Among the hundreds of new features coming with this release, it might be easy to miss those which are truly important for the medical device, pharmaceutical or clinical sectors.  Let me highlight 3 new or enhanced capabilities. Continue reading

Seamless Integration of FKM Guideline in ANSYS Workbench with ACT

As we all know, a frequent challenge in FEM is the evaluation of stress results, in particular with cyclic stresses. The FKM guideline “Analytical Strength Assessment of Components” describes a static strength assessment as well as a fatigue strength assessment. This guideline was developed by the Advisory Board for Engineering and Research for various applications in mechanical engineering and other sectors. Continue reading

10X Faster Insight for Structural Analysis

ansys 17 10X engineering simulationIf you’ve heard anything about ANSYS 17.0, it’s that it is faster than ever. Faster solvers, faster processing, greater core counts — it all sounds great, doesn’t it? Everyone wants to get their work done faster, and faster is better than slower, isn’t it? But what exactly does “faster” mean to engineers performing structural analysis simulations today? Continue reading

Mesh Creation for Large Fabricated Structure Analysis

FEA meshed ship hull structural analysis

Many structural analysis models that use shell elements consist of a large number of bodies that need to be connected together to create a valid analysis model. These structures are typically manufactured by welding, for example ship structures.

There are a number of methods that can be used in ANSYS Mechanical for creating this type of model, which requires the geometry to be meshed and connected. Continue reading

Predicting Equipment Fatigue Caused by Flow-Induced Vibration

Tacoma Narrows BridgeThe energy of a human voice at certain pitch and volume can shatter a wine glass due to vibrations caused by sound waves. Motion of fluids can also create structural vibration, sometimes with disastrous consequences: In 1940, the Tacoma Narrows Bridge in Washington state collapsed when high winds caused the structure to oscillate with increasing amplitude from end to end, until sections of the bridge fell into the river. The bridge structure was responding to the transient forces caused at certain flow frequencies as the wind blew past the bridge. At a critical vibration frequency corresponding to the natural (or harmonic) frequency of the structure, mechanical resonance occurs, and the objects fail — glass shatters, the bridge collapses. Continue reading