10 Compelling Reasons to Upgrade to ANSYS 17 for Healthcare Applications

On January 27, ANSYS released its biggest version ever, ANSYS 17.0. Although the ANSYS simulation platform is renowned for its comprehensive coverage of virtually every industry through its extensive range of simulation tools, this latest release is particularly suited for the healthcare industry, whether you are modeling structural, fluid or electromagnetic applications — not to mention those of you engaged with multiphysics modeling. Among the hundreds of new features coming with this release, it might be easy to miss those which are truly important for the medical device, pharmaceutical or clinical sectors.  Let me highlight 3 new or enhanced capabilities. Continue reading

Seamless Integration of FKM Guideline in ANSYS Workbench with ACT

As we all know, a frequent challenge in FEM is the evaluation of stress results, in particular with cyclic stresses. The FKM guideline “Analytical Strength Assessment of Components” describes a static strength assessment as well as a fatigue strength assessment. This guideline was developed by the Advisory Board for Engineering and Research for various applications in mechanical engineering and other sectors. Continue reading

10X Faster Insight for Structural Analysis

ansys 17 10X engineering simulationIf you’ve heard anything about ANSYS 17.0, it’s that it is faster than ever. Faster solvers, faster processing, greater core counts — it all sounds great, doesn’t it? Everyone wants to get their work done faster, and faster is better than slower, isn’t it? But what exactly does “faster” mean to engineers performing structural analysis simulations today? Continue reading

Mesh Creation for Large Fabricated Structure Analysis

FEA meshed ship hull structural analysis

Many structural analysis models that use shell elements consist of a large number of bodies that need to be connected together to create a valid analysis model. These structures are typically manufactured by welding, for example ship structures.

There are a number of methods that can be used in ANSYS Mechanical for creating this type of model, which requires the geometry to be meshed and connected. Continue reading

Predicting Equipment Fatigue Caused by Flow-Induced Vibration

Tacoma Narrows BridgeThe energy of a human voice at certain pitch and volume can shatter a wine glass due to vibrations caused by sound waves. Motion of fluids can also create structural vibration, sometimes with disastrous consequences: In 1940, the Tacoma Narrows Bridge in Washington state collapsed when high winds caused the structure to oscillate with increasing amplitude from end to end, until sections of the bridge fell into the river. The bridge structure was responding to the transient forces caused at certain flow frequencies as the wind blew past the bridge. At a critical vibration frequency corresponding to the natural (or harmonic) frequency of the structure, mechanical resonance occurs, and the objects fail — glass shatters, the bridge collapses. Continue reading

ANSYS Advantage: Oil and Gas Industry Focus on Safety and Reliability

ANSYS Advantage Oil and Gas 2014The oil and gas industry is full of challenges. Equipment must operate reliably under harsh conditions, or companies risk loss of life, environmental disaster, and reduced revenue from maintenance or unscheduled downtime. As I worked with ANSYS global director of energy and process industries Ahamad Haidari to compiled the newest special issue of ANSYS Advantage for the oil and gas industry, the importance of product reliability and performance in this market became apparent. Beyond that, engineers in any industry can benefit from the best practices explored in this issue. Continue reading

The World Cup is Already a Success for Brazil!

Tomorrow, December 6, is an important day for many because it’s the final draw that will deliver the verdict on the eight football (soccer) groups that will kick off the 2014 FIFA World Cup — one of the most popular sporting events in the world, surpassed only by the Olympic Games. The 2014 World Cup will take place in Brazil from June 12 to July 1. This year will be special for me because, for the first time since 2002, Belgium has qualified. The team from Belgium includes a large number of players from prestigious European championships, so we have a fair chance to go quite far in the competition.

Whether the Belgian team will be a tough competitor or an easy seed could influence the rest of the World Cup. Unfortunately, it is very unlikely I will be able to support our Belgian Red Devils in person in Brazil next summer. But I’ll feel a part of the event thanks to the remarkable work done under the auspices of NOVACAP, Maruska Holanda and Pedro Almeida performed by Prof. Paulo de Mattos Pimenta and ESSS, the ANSYS channel partner in South America.

The Stadium That Will Host the 2014 World Cup

The National Stadium of Brasilia Mane Garrincha

The National Stadium of Brasilia Mane Garrincha

Because a stadium is usually considered a prestigious landmark that is expected to last for decades, the quality of the design is crucial. The stadium must be able to withstand any situation it might experience during its lifetime such as heavy wind or cheering crowds. Continue reading

The Big Problem – How to Solve Increasingly Larger Models

We see a clear trend toward the need to solve increasingly larger models. There are many reasons for this trend. You are dealing with more detailed CAD models of always larger assemblies. You want more accurate results. The automated meshing procedure can generate larger meshes with ease. And obviously, every desktop machine has more CPU power than ever, and companies have invested in computing clusters.

Continue reading