Indee Labs is Simulating Its Way to Scalable Gene-modified Cell Therapy

Gene-modified cell therapy (GMCT) represents the most effective platform for many patients with advanced disease. These therapies, however, are held back by inefficient development processes and manufacturing scales that are limited to a minute fraction of the relevant patient populations due to current gene delivery methods such as viral vectors. Simulation is helping to accelerate this development process and advance cell therapy.

Indee Labs is a Y Combinator company spun out of the Australian National Fabrication Facility. The team is developing novel gene delivery technology that uses ANSYS computational fluid dynamics solutions to gently and efficiently deliver genetic materials such as CRISPR to your immune cells. Indee Labs views gene delivery as the most problematic step in developing and manufacturing GMCTs since a global shortage in viral vectors has led Big Pharma to invest hundreds of millions of dollars into their own manufacturing facilities. Continue reading

Designing A Trimaran Fast Ferry with ANSYS Fluent

Multihull ships create engineering challenges that are “out of range” of conventional ship design techniques. They require complex, CFD analysis to optimize multiple performance variables like resistance, endurance, stability, seakeeping, etc. In this article, we take you behind the scenes at KUASAR MARIN Engineering Inc., where we leveraged ANSYS Fluent to explore design iterations for a three-hulled, high-speed passenger ferry that could compete with existing two-hull catamarans.

Baseline Design Encounters Problems Continue reading

Do Trees Improve the Near-road Air Quality?

The Laboratory for Environmental Flow Modeling at the University of California, Riverside, has used ANSYS Fluent software to model a variety of environmental flows. As a third year Ph.D. candidate student in Mechanical Engineering, I recently evaluated the influence of roadside vegetation barriers on the near-road air quality using Computational Fluid Dynamics (CFD), as part of a research team that included my colleague Seyedmorteza Amini and my advisor Dr. Marko Princevac.

Exposure to traffic-related air pollution leads to public health concerns such as respiratory problems, birth and developmental defects, cardiovascular effects and cancer for people who live and work near major roadways. The near-road air quality can be improved directly by deploying vehicle emission control techniques, using alternative fuels or electric vehicles (EVs), or via passive pollutant control and roadside configuration design such as solid and vegetative barriers. Continue reading

Discovery Live Paves the Way for Rapid Simulation Results

I was recently presented with a unique opportunity to compare the results of full ANSYS CFD simulations with the results obtained using the new ANSYS Discovery Live product, which provides results instantly upon changing the geometry without interrupting a run. I was very pleased and surprised by the speed and accuracy of Discovery Live in this comparison test.

I work for Astec, Inc., the subsidiary of Astec Industries that builds asphalt plants. Roadtec Inc., another Astec Industries company, builds asphalt pavers, reclaimers and material transfer vehicles (MTVs). An MTV helps to accomplish non-stop, non-contact paving by offering a continuous supply of Hot Mix to the paver. By separating dump trucks from the paver this way, contractors are able to make a smoother finished road.

Continue reading

Chinook ETS Wind-Powered Car Breaks World Record with the Help of ANSYS

Chinook ETS is a team of student engineers from École de technologie supérieure in Montreal, Canada. We are trying to design and build a prototype wind-powered car with the highest possible efficiency for the Racing Aeolus event held in Den Helder, Netherlands. Our goal is not only to perform well during the race but also to develop efficient wind turbines through numeric simulations, new composites fabrication processes, advanced electronics and out-of-the-box thinking. ANSYS simulation solutions play a key role in our design efforts.chinook team with wind powered car Continue reading

How HyperXite Used ANSYS Simulation to Advance in the Hyperloop Competition

The Hyperloop from SpaceX is the future of fast, affordable and sustainable transportation.  HyperXite, our team from the University of California, Irvine, which is competing in the SpaceX Hyperloop Pod Competition, is using ANSYS Fluent and ANSYS Mechanical simulation solutions to design and build a 1:2 scale Hyperloop pod.

If successful, the pod eventually will be able to transport 840 people between Los Angeles and San Francisco at 760 mph while floating on a cushion of air. Of the 120 teams in the competition, we were the only team in the top five at SpaceX design weekend to propose air levitation as our driving force. Continue reading

Closing the Loop on Medical Device Systems Simulation: An Insulin Delivery Systems Example

Great products are composed of great individual components that are increasingly assessed from every possible physical perspective. But as you probably know, optimally designed components do not necessarily result in optimal systems. Eventually, the components are assembled, powered, sensed and controlled as an integrated system, and must therefore be simulated as a system to meet peak performance requirements and stringent safety standards. But building and testing integrated product systems and subsystems can be costly and may not identify optimal configurations and/or potential shortcomings. Systems simulation can help to overcome this challenge. Continue reading

The Need for Speed Drives NASCAR’s Richard Childress Racing to the Cloud

In the world of stock-car racing, finding even the smallest competitive advantage is the difference between winning and losing.

That’s why at Richard Childress Racing, we design and build our race cars end-to-end. We engineer and machine our own chassis and suspension components, we design and fabricate our own bodies, and we test and build our own engines. Everything is built from the ground up at RCR.

Continue reading

A Very Different Kind of Startup

In the Pacific Northwest there is a very different kind of startup emerging in the shadows of Microsoft, Amazon and Boeing. Hardware is being built, software is being written, and deadlines are being made (and sometimes missed). But this startup in Tacoma, Washington is not fixed on competing with their friendly giant neighbors to the north. To the contrary, its “employees” aspire to work for them one day. That’s because this startup is no company at all. Rather it’s a high school that just completed its first year.

The School of Industrial Design, Engineering and the Arts, better known as iDEA, runs on an innovative concept that invites local businesses into the school as a partnership. Working as mentors or adjunct instructors, these “community partners” work directly with the students in a project-based learning framework. The projects may range from developing software apps, to wooden boats, to bicycles, to guitar pedals. One look around the reconfigured gymnasium packed with CNC machines, lathes, and countless other tooling equipment and it’s easy to see how serious they are. They are going to build stuff — lots of it! Continue reading

Simulation Used to Spur Design Development for Nuclear Power

Nuclear power is a key player in the future of clean energy, and multiple companies are pursuing new technologies to maximize nuclear’s contribution to the clean energy space. Founded in 2011 and based in Cambridge, MA, Transatomic Power is an advanced nuclear technology startup developing and commercializing a molten salt reactor (MSR), or a nuclear reactor whose fuel is in liquid, rather than solid, form. This technology, originally developed at the Oak Ridge National Laboratory (ORNL) in the 1960’s, offers multiple safety and cost benefits over traditional nuclear reactors, in which the fuel is in the form of solid pellets cooled by water.

Tranatomic’s MSR design builds on the original work at ORNL and adds a few innovative new features that reduce the reactor’s size and, as a result, it’s cost – a huge factor in building new nuclear power plants. Though the development process is a long one, the world needs a larger capacity for clean energy generation, and it’s this ultimate goal that drives the Transatomic team forward. Continue reading