Cloud Computing Speeds Antenna Design

In a previous blog, I noted that born in the cloud companies can be a boon to tech startups looking to optimize precious resources. In this post, I offer a spectacular case in point.

Optisys had big goals and big compute needs. Designing its next-gen antenna, the Utah-based startup sought order-of-magnitude reductions in size, weight and lead time, and a cost-effective solution for running large, concurrent RF electronics simulations. Establishing an in-house IT function wasn’t an option: Optisys (like many startups) had little appetite or budget for investing outside its core business. Instead, it adopted Rescale’s cloud-based platform to satisfy its simulation needs. Continue reading

Investigating Placement of Antennas Inside an Aircraft Fuselage

You may be surprised to learn that a standard passenger jet can have 30 to 50 antennas protruding from the aircraft’s external surface, producing drag forces that can drastically reduce fuel efficiency at a time when airlines are trying to reduce energy consumption. Most antenna designs are engineered for safety purposes, such as air traffic control, traffic collision avoidance, instrument landing systems and distance measuring equipment. Increasingly, antennas are being added to meet passenger demand for more and faster Wi-Fi access, in-flight TV and cellphone applications.

aircraft antennas

Antennas are mounted on the exterior of today’s airliners

Continue reading

Enhancing the Accuracy of Full-body Scanners for Improved Airport Security

If you’ve traveled by plane in recent years, you know the airport security drill: Put all your possessions through the X-ray detector, empty your pockets and step into one of the full-body scanners — or millimeter-wave holographic scanner, to use its official name. After you raise your hands above your head, the scanner sends out millimeter waves (mm-waves) that penetrate your clothing and bounce off your skin — or any other object you might be trying to conceal under your clothing, like a weapon of some sort. (The mm-wave radiation is 10,000 times less powerful than a single cellphone call, so you need not be concerned about any health effects.) An antenna array in the sweeping scanner device detects the reflected mm-waves and reconstructs an image of your body.

Airport mm-wave scanner

Continue reading

ANSYS HFSS 18 – Raising the Bar in Electronics

ANSYS HFSS users are constantly telling me, “Wow, I didn’t know HFSS could do that!” I guess I shouldn’t be surprised — our software development and product management teams have been working tirelessly over the last few years to integrate ever more valuable features into HFSS to deliver a product worthy of its well-deserved reputation as “the gold standard.”  Focusing on automated simulation and design workflows for antennas and high speed electronics, ANSYS HFSS 18 will help you achieve the increasing requirements for wireless connectivity, thermal performance and power efficiency within shorter design schedules. Continue reading

Internet of Things – Making Wireless Happen

internet of things wireless office antennaWireless communication is changing our world. The number and density of antennas in our immediate surroundings have exploded, and are increasing every day. There are literally hundreds of antennas in a typical home and thousands in an office building. Driven by the demands of the Internet of Things, along with autonomous vehicles and electrification initiatives in the aerospace sector, more antennas are required to be integrated into our devices to make all of this wireless interconnectivity possible. Continue reading

Santa Struggles with Radio Frequency Interference – Could Hinder Gift Delivery

Santa Calling about Radio Frequency InterferenceWhen my caller ID lit up showing an incoming call from “The North Pole” I scratched my head wondering who it could be. Only one person I know of lives at The North Pole. Yup, it was Santa. In the past, Santa has worked with ANSYS engineers to improve the structural and aerodynamic properties of his sleigh. This year, Santa had another concern that he was calling me about. It seems that on some test flights in preparation for this year’s Christmas Eve deliveries, Santa noticed that the sleigh’s on-board GPS radio that he and his elves rely on for accurate tracking information wasn’t always working properly. Santa noticed that the problem usually occurred when he flew near cell phone base station towers. We assured Santa that we could help and we set about modeling the installed radio frequency (RF) systems on his sleigh in order to understand what was happening. Continue reading

So You Want to Design Medical Devices

Healthcare is often cited as one of the leading applications for the Internet of Things (IoT). Looking around the Web, it is clear that leading high tech companies like Qualcomm, Intel, Cisco, Juniper all have initiatives on healthcare. A notable example is Google, which has already created a prototype contact lens to help measure glucose levels in diabetic patients.

“Better patient outcome” is a goal that all of us can get behind!

But even the most successful high-tech companies are quickly discovering that designing medical devices is different than designing consumer electronics. Designing for the healthcare industry requires extra rigor, insight, and collaboration with healthcare industry experts. Continue reading

I Can’t Hear You! Radio Frequency Interference (RFI) in Sports Arenas

During a recent NFL game, the visiting team complained about picking up the home team’s radio broadcast on their coach-to-coach headsets preventing the coaches from communicating with one another. The home team indicated that there were also issues communicating with the quarterback using their radio system.

RF interference stadiumsRadio frequency interference problems in major sports stadiums are unfortunately very common given the large number of radios present in a relatively small area. A typical sports stadium includes systems transmitting and receiving signals for game day operations, referee and commercial coordination, coach and player communication, a variety of cell phone networks, Wi-Fi services, and a number of other wireless services. Continue reading

There’s a Power Battle Going On with the Internet of Things

What do antennas, sensors and integrated circuits all have in common in an IoT-connected device? They are all fighting for the same power supply resources. Indeed, power consumption may be the biggest challenge facing designers of mobile devices for the Internet of Things. As battery sizes shrink to allow for smaller form-factors, battery lifetime becomes critical to meeting cost, performance, and reliability requirements. Continue reading