Indee Labs is Simulating Its Way to Scalable Gene-modified Cell Therapy

Gene-modified cell therapy (GMCT) represents the most effective platform for many patients with advanced disease. These therapies, however, are held back by inefficient development processes and manufacturing scales that are limited to a minute fraction of the relevant patient populations due to current gene delivery methods such as viral vectors. Simulation is helping to accelerate this development process and advance cell therapy.

Indee Labs is a Y Combinator company spun out of the Australian National Fabrication Facility. The team is developing novel gene delivery technology that uses ANSYS computational fluid dynamics solutions to gently and efficiently deliver genetic materials such as CRISPR to your immune cells. Indee Labs views gene delivery as the most problematic step in developing and manufacturing GMCTs since a global shortage in viral vectors has led Big Pharma to invest hundreds of millions of dollars into their own manufacturing facilities. Continue reading

Do Trees Improve the Near-road Air Quality?

The Laboratory for Environmental Flow Modeling at the University of California, Riverside, has used ANSYS Fluent software to model a variety of environmental flows. As a third year Ph.D. candidate student in Mechanical Engineering, I recently evaluated the influence of roadside vegetation barriers on the near-road air quality using Computational Fluid Dynamics (CFD), as part of a research team that included my colleague Seyedmorteza Amini and my advisor Dr. Marko Princevac.

Exposure to traffic-related air pollution leads to public health concerns such as respiratory problems, birth and developmental defects, cardiovascular effects and cancer for people who live and work near major roadways. The near-road air quality can be improved directly by deploying vehicle emission control techniques, using alternative fuels or electric vehicles (EVs), or via passive pollutant control and roadside configuration design such as solid and vegetative barriers. Continue reading

Simulation Innovations: From Systems Simulation to Autonomous Vehicles to Digital Twins

The role of 3-D physics, systems simulation and embedded software is expanding rapidly into new industries and disciplines. A few years ago, 3-D physics simulation was limited to specific departments within organizations, and often these departments did not coordinate with each other on product development activities. Fast forward to today, and much has changed and must continue to evolve in order for companies to remain competitive in the changing landscape of product development. Integrated 3-D physics, systems simulation and embedded software tools are of the utmost importance — especially when tackling the challenges of quickly and accurately developing the technology driving digital twins and autonomous vehicles.

Join us in Paris for our Innovations Conference on December 5-6 and learn how our customers are using simulation to bring their products to market faster.

Continue reading

Proprietary ANSYS App Optimizes Duct Flow and Pressure

Effective design for almost any kind of product, from consumer goods to industrial equipment, requires taking a large number of factors into account. By making appropriate trade-offs using simulation for digital exploration and optimization, companies can quickly develop efficient and reliable products.

For example, industrial gas turbines burn gas to turn rotors to produce electricity, with substantial amounts of hot exhaust gases as a byproduct. Instead of just warming up the surrounding air, the heat contained in exhaust gases can be put to work by capturing it and letting it flow around tubes containing water, converting the water into steam. The boiler that contains the pipes and the exhaust gases is called a heat recovery steam generator (HRSG). The steam can then flow to a steam turbine to generate more electricity.

Typical inlet duct design point analyzed as part of digital exploration

Typical inlet duct design point analyzed

Continue reading

Structural Simulation Delivers Modular Wi-Fi Towers Quickly

Wi-Fi access today seems more like a right than a privilege. But easy access to Wi-Fi is not widespread in many countries, especially in out-of-the-way rural areas where structural design and building of Wi-Fi towers can be challenging. In the interior of Brazil, only 22 percent of the people have Wi-Fi due to the costs of installing towers and the economics of providing service to sparsely populated areas. But startup Jet Towers is trying to remedy this situation using ANSYS AIM for structural simulation to design prefabricated, modular truss towers that can be installed and running within a week of purchase, instead of the normal five weeks for custom designed Wi-Fi towers.

Simulation helps design Wi-Fi towers

Continue reading

CFD Simulation of HVAC Systems on Trains Makes Rail Travel More Comfortable

Every time I travel in Europe, I enjoy riding the fast, comfortable trains. Riding from city center to city center without long security lines and tight uncomfortable airplane seats (worse for me because I’m tall!) can even make travel pleasant. But, I’ve always taken that comfort for granted. Were trains not always that way? Then, I found out about the challenges that Siemens engineers face as they design passenger coaches. Now I have huge respect for those engineers. Read on to find out how CFD is making their lives easier while giving me the comfort I love.

Siemens Ice 4 Train HVAC Systems on Trains

Continue reading

Fast, Accurate and Reliable Turbomachinery Simulation with Harmonic Analysis – Meet me at the Turbo Expo to learn more!

Transient blade row simulations in turbomachinery are needed either to improve the aerodynamic performance predictions or because the flow interaction we are trying to resolve and predict is unsteady in nature such as aeromechanical, aerothermodynamic or aeroacoustic interactions. Because the blade pitch is not similar between the rows of turbine or compressor, a transient blade row simulation will usually require the modeling of the full wheel (or full geometry). This constraint renders these simulations not practical and in many cases prohibitive as analysis or design tools. Continue reading

In-Flight Icing Simulation: 3-D CFD-Icing is Here to Stay

3-D computational fluid dynamics simulation of in-flight icing (3-D CFD-icing) has achieved considerable advances in the last decade , and many dynamic OEMs and second tier suppliers are using them to speed icing certification. Yet, others remain on the fence, using technologies from three decades ago.

inflight icing simulation

The different characteristics of ice, at different locations on an aircraft:
can that be done in 2-D?

Continue reading

Overset Mesh and CFD Simulates a Clean Room Smoke Test

clean room environmentRecent innovations in ANSYS 18 overset mesh have made it possible to use computational fluid dynamics simulations to model the smoke tests that provide useful guidance in designing clean rooms.

Ensuring Clean Rooms are Actually Clean

In the healthcare and electronics industries, process contamination is a primary concern. They manufacture these sensitive products in clean rooms where the concentration of airborne particles is controlled to specified limits. For example, a Class 100 clean room keeps particles of 0.5 microns or larger to less than 100 per cubic foot of air. Even in these controlled environments, particles are constantly being created and can settle on and contaminate surfaces and products.   Continue reading

Better Particle Erosion Fluid Dynamics Modeling in ANSYS Fluent 18

ANSYS Fluent 18 has advanced erosion fluid dynamics modeling by adding three industry-standard models to the previous default model.

Erosion wear is the loss of material due to repeated impact of solid particles on a surface and causes major economic losses across diverse industries such as oil and gas, hydraulic transportation, and chemical processes. Erosion severely damages flow passages, valves and pipe fittings, leading to higher replacement costs as well as the loss of valuable production time. For example, some oil and gas fittings can fail after just 30 minutes of operation due to high erosion rates! Engineers need to quickly evaluate the erosion on dozens of design variations to find ways of stretching the part’s lifespan in order to reduce costs and maximize process up-time.

Continue reading