Indee Labs is Simulating Its Way to Scalable Gene-modified Cell Therapy

Gene-modified cell therapy (GMCT) represents the most effective platform for many patients with advanced disease. These therapies, however, are held back by inefficient development processes and manufacturing scales that are limited to a minute fraction of the relevant patient populations due to current gene delivery methods such as viral vectors. Simulation is helping to accelerate this development process and advance cell therapy.

Indee Labs is a Y Combinator company spun out of the Australian National Fabrication Facility. The team is developing novel gene delivery technology that uses ANSYS computational fluid dynamics solutions to gently and efficiently deliver genetic materials such as CRISPR to your immune cells. Indee Labs views gene delivery as the most problematic step in developing and manufacturing GMCTs since a global shortage in viral vectors has led Big Pharma to invest hundreds of millions of dollars into their own manufacturing facilities. Continue reading

Startups Bring Excitement to Established Industries

Startup companies are using ANSYS software in exciting and groundbreaking ways. It should come as no surprise then that some of my favorite articles in our ANSYS magazines (ANSYS Advantage and Dimensions) in 2017 were generated with the assistance of startups. I think the enthusiasm of these hardworking teams of entrepreneurs who participate in the ANSYS Startup Program is demonstrated in these articles about how their pioneering products are being developed.

Many startups literally begin in a garage. For example, Kyle Doerksen, Founder and CEO of Future Motion, inventor of the Onewheel motorized skateboard, prototyped his idea in his garage before launching a Kickstarter campaign. With the help of engineering simulation his team quickly moved from prototype to mass production. Future Motion has shipped more than 10,000 products, expediting many short commutes and creating a new form of transportation and recreation along the way.

startup develps onewheel Continue reading

Designing A Trimaran Fast Ferry with ANSYS Fluent

Multihull ships create engineering challenges that are “out of range” of conventional ship design techniques. They require complex, CFD analysis to optimize multiple performance variables like resistance, endurance, stability, seakeeping, etc. In this article, we take you behind the scenes at KUASAR MARIN Engineering Inc., where we leveraged ANSYS Fluent to explore design iterations for a three-hulled, high-speed passenger ferry that could compete with existing two-hull catamarans.

Baseline Design Encounters Problems Continue reading

ANSYS Fuels Nature-Inspired 3-D Printing

Nature is full of amazing materials. Wood and bone, for example, are natural composites with finely-tuned microstructures. They have optimized fiber alignment for enhanced strength. At Fortify — an additive manufacturing startup — we wondered if harnessing the power of natural composites in 3-D printing could help us to create high-performance end-use parts.

Our observations of the natural world led to the development of our fluxprint technology, which utilizes magnetic fields in a 3-D printer to align carbon fibers throughout a printed composite part. This process results in high-performance components with high-geometric complexity and incredible strength-to-weight ratios. Continue reading

Cloud is Leveling the Playing Field for Technology Startups

A technology startup faces a great deal of challenges: funding, hiring, office space, manufacturing, messaging, legal, software, and infrastructure, to name a few. CEOs can feel overwhelmed by the sheer size and complexity of the puzzle that is establishing a successful corporation. It only takes one of the pieces to fail to jeopardize the whole enterprise. The stakes are high.

One area of investment that is particularly expensive and difficult to get right for hardware startups is the engineering simulation software and high performance computing (HPC) infrastructure required for virtual prototyping and testing. Rescale and the ANSYS Startup Program offer solutions for startups with on-demand and fully scalable software and hardware that require zero in-house IT.

Rescale and the ANSYS Startup Program are partnering to offer a scalable,
zero-IT simulation solution to startups

Continue reading

Simulation Used to Spur Design Development for Nuclear Power

Nuclear power is a key player in the future of clean energy, and multiple companies are pursuing new technologies to maximize nuclear’s contribution to the clean energy space. Founded in 2011 and based in Cambridge, MA, Transatomic Power is an advanced nuclear technology startup developing and commercializing a molten salt reactor (MSR), or a nuclear reactor whose fuel is in liquid, rather than solid, form. This technology, originally developed at the Oak Ridge National Laboratory (ORNL) in the 1960’s, offers multiple safety and cost benefits over traditional nuclear reactors, in which the fuel is in the form of solid pellets cooled by water.

Tranatomic’s MSR design builds on the original work at ORNL and adds a few innovative new features that reduce the reactor’s size and, as a result, it’s cost – a huge factor in building new nuclear power plants. Though the development process is a long one, the world needs a larger capacity for clean energy generation, and it’s this ultimate goal that drives the Transatomic team forward. Continue reading

PowerCone™ Wind Turbine Development Accelerated with Simulation

Artist rendering of the PowerCone

The journey of BiomeRenewables’ PowerConeTM wind turbine started with witnessing a falling maple seed. I was sitting on my deck when I was struck by how slowly the seed was able to fall. As it turns out, maple seeds — for their size — exhibit maximum aerodynamic efficiency; they are able to hit what is known as the Betz Limit — 59.3 percent aerodynamic efficiency. Careful analysis revealed that there is something about the seed’s shape and the way it interacts with the air that allows it to achieve such high efficiency numbers — namely, that it interacts with the oncoming flow at an angle greater than 90 degrees. This is not the case with modern wind turbines, which interact with the wind at perpendicular angles of 90 degrees. Continue reading

Wireless Charging Design in Wearables Using Simulation

Working for ANSYS gives me incredible opportunities to work with innovative companies and learn about the latest technologies that are being developed to improve our lives. One of the intriguing companies I have had the pleasure to work with is RF2ANTENNA. RF2ANTENNA works on developing innovative and easy-to-integrate products for specific applications in wireless communications and wireless charging, with the goal of improving the efficiency of IoT devices with affordable solutions. Their core competency is in providing solutions to radiation problems in mobile products. The ANSYS Startup Program has given them the opportunity to take their work to the next level. Continue reading

Onewheel: A Turbocharged Skateboard Powered by ANSYS

Most people occasionally have dreams of flying — without the aid of an airplane or other mechanical device — just soaring through the air on their own power. The thrill ends with dream, unfortunately. Closer down to earth, many of us enjoy the feeling of gliding effortlessly across the snow on skis or a snowboard, over the ice on skates, or on a surfboard cutting through the water. There is something about the effortless gliding sensation that can’t be approached by the more mundane act of walking — though walking has its pleasures too.

Onewheel skateboard

Continue reading

Why Startups and New Players are Driving Innovation in the Space 2.0 Arena

With a clear mission in mind, huge government funding and thousands of talented scientists, the early pioneers of space exploration were disrupting innovators, able to achieve what many thought impossible. Then organizations grew in size, and projects and goals multiplied while public funding was often in doubt. Despite other significant success, this led to a slowdown in the innovation pace. Now, another wave of innovators has come: Space 2.0 players.

With no history, no legacy of tools and processes and no constraints in workflow design, they were able in a few years to attract huge private funds and challenge the leadership of the big established players.

Both the old players and the newcomers rely on simulation, but I see a big difference in the results they get in terms of efficiency, costs and innovation pace. The secret is in how they implement it. Continue reading