Six Myths of High-Performance Computing

six myths of high performance computingLooking back at my notes from conversations with many engineers during our recent ANSYS Convergence Conferences, I must admit that I still came across some myths and misconceptions about high-performance computing (HPC) for engineering simulation. Let me share six really striking ones with you:

  1. HPC is available on supercomputers only
  2. HPC is only useful for CFD simulations
  3. I don’t need HPC – my job is running fast enough
  4. Without internal IT support, HPC cluster adoption is undoable
  5. Parallel scalability is all about the same, right?
  6. HPC software and hardware are relative expensive

In this blog, I’ll address — and attempt to dispel — the first 3 myths. Continue reading

Readers Choice for Top 5 ANSYS Advantage Articles

I enjoy working on every article I coordinate for ANSYS Advantage magazine. I always learn something new while assisting ANSYS customers and staff tell their stories of excellence in engineering simulation. I have no favorites as I appreciate all of the articles. But, I decided to let our readers choose their top five, based on the power of downloading. The following are the most-read articles from the four issues (three regular issues and one special issue for oil and gas) of ANSYS Advantage published last year. All these stories have one thing in common: They feature robust and reliable design practices. Drumroll please …

Continue reading

HFSS 3-D Layout and the Phi Mesher

ANSYS HFSS has been the mainstay, gold-standard electromagnetic simulation technology for many years. There are many key pieces to its reliable technology — such as hierarchical vector basis functions for robust solutions to Maxwell’s equations, two-dimensional port solving technology, the trans-finite element method for fast extraction of s-parameter models, state-of-the-art fast and scalable matrix solving technology, and its flexible and easy-to-use parametric interfaces.

Recently, we introduced significant breakthroughs, many in the high-performance computing (HPC) area of HFSS, such as: the domain decomposition method (DDM); HFSS-IE a 3-D method-of-moment solver that includes ACA fast-solving technology as well as a physical optics solver;and hybrid solving that combines DDM and HFSS-IE and provides the ability to rigorously solve large-scale complex electromagnetic problems with a combination of finite elements and method of moments. Continue reading

ACT Templates for ANSYS DesignXplorer

Application Customization Templates - ACT

Are you familiar with ANSYS ACT (Application Customization Templates)? ACT allows all sorts of great customization. You could use ACT to encapsulate APDL scripts, add new loads and boundary conditions, create custom results, or even integrate third party tools. For instance, Vanderplaats R&D  just integrated their topology optimization product into ANSYS Mechancial via ACT.

The ACT Toolkit requires a license to develop extensions, but not to use extensions created by others or provided in our ACT library. Continue reading

Privilege of Having Strong HPC Technology Partnerships

As each week begins, I realize what a privilege it is to work with leading HPC technology providers like Intel, NVIDIA, Dell, HP, IBM and many others. Apart from the pleasant inter-social aspects of our weekly meetings, these collaborations enable us to provide simulation solutions optimized on the latest computing platforms. I strongly believe this is necessary because the computing landscape changes so quickly. Our customers want to take advantage of the latest HPC technologies and expand the scope of what they can accomplish with simulation.

nvidia teslaOne example of a strong partnership is NVIDIA. As a result of this partnership, ANSYS and NVIDIA have developed GPU-accelerated solvers and algorithms across our full range of multiphysics solutions. We were one of the first commercial engineering simulation providers to introduce structural mechanics support of GPU computing, and we released the first major commercial GPU-accelerated fluid dynamics solver of its kind with ANSYS 15.0. Continue reading

Designing to Meet 54.5 mpg by 2025 – Fuel Efficiency Infographic

While the auto engineering industry is undergoing a large breadth of innovation (autonomous vehicles, dashboard apps to help the driver use less fuel and drive more safely), the ambitious goal of 54.5 mpg by 2025 will require car manufacturers to focus on the fundamentals of existing technologies, such as engines, transmissions and aerodynamics.

Surely, 54.5 mpg is entirely achievable, but it is a daunting goal that will require auto makers to drastically ramp up their engineering efforts. And while 2025 seems far away, it will be difficult to finish all the necessary engineering by that time if engineers progress at today’s rate. Accelerating engineering is the burning need of the day — and of the next decade — and it can only be accomplished by taking full advantage of advanced engineering tools such as simulation. Continue reading

Four Out of Top Six F1 Racing Teams Powered by ANSYS

image of Red Bull Race Team

Team Red Bull Racing poses for the end of season team photo during previews for the Formula One Grand Prix of Brazil at Autodromo Carlos Pace on November 22, 2012 in Sao Paulo, Brazil. (Photo by Vladimir Rys)

If you’re like me — a passionate fan of Formula 1 — you were probably on the edge of your seat during the last race of the season in Brazil, during which either the Red Bull of Sebastian Vettel or the Ferrari of Fernando Alonso could have won the championship. After a season of 20 F1 races, the fact that the contest was so close is a measure of the margins these teams work with. Anyone who has been to a race and witnessed these race cars firsthand knows exactly how close to the edge the cars and drivers are.

F1 Vehicles Most Technologically Advanced

F1 vehicles are the most technologically advanced in the world; they need to adapt each year to changing regulations. This often results in a team redesigning the car’s roughly 4,000 components to meet the demands of performance and safety. But not only that, engineering teams are continually improving performance between races — often having only two weeks between races to make a performance impact. With lap times for the leading cars differing by fractions of a second, improperly executing these changes from one circuit to the next can be the difference between being on the podium and not scoring any points. Continue reading

Offering a New Paradigm Shift in CAE?

What works for manufacturing companies also applies to engineering simulation software providers. In a competitive climate, we all must aim continually for innovation, listen to the voice of our customers, anticipate swiftly changing needs, identify buyer expectations and make appropriate changes. I strongly believe that the parametric licensing and capabilities newly introduced with ANSYS 14.5 are truly innovative, standing out from the rest. They could become a paradigm shift in CAE, as they will make extensive design exploration and robust design a reality.

Given the market forces for increased product performance and integrity, engineering simulation undoubtedly can help manufacturers to evaluate more design ideas and reach the “best” design, one  that works across a range of operating conditions. For that matter, many engineering simulation software providers today do offer design exploration and optimization tools. But despite the need, the adoption of these tools is relatively small. Our product manager for ANSYS DesignXplorer, Simon Pereira, regularly investigates the obstacles to further adoption, and, in each of his reports, the biggest hurdles appear to be unacceptable turnaround times, shortcomings in usability and lack of available licenses. Continue reading