Engineering a Hyperloop Pod with ANSYS

Since starting out as a segmented group of individuals passionate about high-speed technology, Berkeley Hyperloop (bLoop) has come a long way in our (roughly) two years of existence. What started as a vague mission to create a broader impact on the future of transport is now a tangible team of engineers, designers, marketers, logisticians and everything in between and we have no plans of stopping now. Of course, we didn’t do it alone. We’d be remiss if we did not acknowledge the generous support of sponsors like ANSYS, sponsors that have helped us realize the dream of designing and bringing a functional Hyperloop pod to that only existed in our wildest dreams up until a few months ago.

berkeley hyperloop pod ansys Continue reading

Formula Motorsports: Accelerating Race Cars through Simulation

UWashington Formula Motorsports is a student-organized team that competes in Formula SAE. We design, build and test two small, formula-style race cars for the competition: one combustion and one electric. Each year we compete nationally and internationally at Formula Student Lincoln and Formula Student Germany. Everything our club produces is done entirely in-house. We produce our own designs, perform our own machining, and manufacture our own carbon fiber parts. Through the entire design process, UWashington Formula Motorsports strives to validate design decisions with sound engineering methods, and the simulations we run using ANSYS make this possible. Continue reading

Embedding ANSYS AIM into a STEM Education

In a high school classroom, we battle constantly against a storm of changing technologies, competing educational needs, time and materials. As technology advances and industries change, educators do their best to keep students competitive and prepared for these changes. It becomes increasingly difficult, though, to develop meaningful challenges for students because of the cost of materials and other resources.

At the same time, it is challenging to justify the time and importance of your content against other subjects in the school, such as math or science. With the power of ANSYS AIM and ANSYS SpaceClaim, the technology education classroom has been given an important tool to fight back against the storm. Continue reading

National Engineers Week – Dreaming of a Better World

national engineers weekIn the United States, National Engineers Week is always the week in February which encompasses George Washington’s actual birthday, February 22. It is observed by more than 70 engineering, education, and cultural societies, and more than 50 corporations and government agencies. ~Wikipedia

When I graduated in 2005 with a Ph.D. in Engineering I did what many of us did at the time: flew to New York City to interview for Quant jobs. That is what was cool and sexy. Financial engineering, not engineering, was all the rage. How times have changed — for the better IMHO. Continue reading

Celebrating 20 Years of Solar Racing with ANSYS

On November 18, 2016, the Blue Sky Solar Racing team gathered at the MaRS Discovery District to celebrate our past achievements and to look forward to the future. We hosted a number of our industry sponsors, faculty supporters, and alumni who explored various displays on the team’s history including photos, trophies and artifacts from past cars. Four generations of cars were displayed at this event as well, including Cerulean (2007), Azure (2011), B-7 (2013) and Horizon (2015). It was an incredible way to celebrate the achievements of the past 20 years of Blue Sky Solar Racing with those who have been part of our journey. Continue reading

The (Technical) Kindness of ANSYS Fluent aaS, a Matlab Example

coding matlab ansys fluentMy friend, a fellow Romanian, just told me a funny story. She just relocated to the U.S. and was asking her dentist “When will I have the root channel treatment?”. The dentist kindly replied “Did you mean root canal, my dear?” 

Human kindness is a beautiful thing. As a software developer, I often wish that computer programs would be equally technically kind. Most of them are not. Many times, when a user mistypes a command, applications crash. Continue reading

FREE Cornell University Course Teaching Engineering Simulations

Do you or someone you know want to learn how to simulate exciting engineering applications using ANSYS and pick up a practical skill sought by employers? Starting next week, February 15th, Cornell University is offering a Massive Open Online Course (MOOC) that teaches the hands-on use of ANSYS. This FREE online course entitled “A hands-on introduction to engineering simulations” is self-paced, enabling participants to go through the lecture videos and complete homework problems on their own schedule. Interested people can sign up now.

Continue reading

My Experience Learning Numerical Simulation Online: Guest Blog

A few years ago, I was fortunate to work on a team that designed a road bike power meter that made it into the bike kit for a professional cycling team. That’s a rewarding accomplishment for a “roadie” like me. Finite element analysis (FEA) was an integral part of the success of that product and insights from the analyses led to a decisive mechanical change during development. It’s safe to say I’m passionate about numerical simulation.

Now I’m taking on a new challenge and am employing FEA to develop hi-tech structural composites. Here, industry is moving toward the numerical simulation realm of virtual rapid prototyping, early in the design cycle, and away from the expensive and time consuming loop to physically build, test, iterate, repeat. Physical validation of simulation is still critical but the goal is to reserve it for mature designs that are already well understood through FEA.

Continue reading

MUR Motorsports Leverages ANSYS Simulation to Win

As the winners of the Formula SAE competition Australia last year, MUR Motorsports is looking to repeat our success by designing a more aggressive aerodynamics package and optimizing the weight of the vehicle. These targets were deemed by our in-house lap simulator to be two of the driving factors for winning the F-SAE Australasian competition in December. To effectively manage our workload and streamline the design process, we used ANSYS simulation software in almost all of our subteam’s design processes. Continue reading

Electromagnetic Braking Simulation by the CMU Hyperloop Team

Elon Musk’s Hyperloop concept, a futuristic train in a pneumatic tube that propels passengers across the country at near super-sonic speeds, could — if successful — revolutionize mass transportation. The Hyperloop, theoretically, can achieve fantastic speeds of up to 760 miles an hour because the train — or pod — magnetically levitates over an I-rail track inside the continuous metal tube, eliminating friction, while the vacuum in the tube itself minimizes air resistance and drag.

As a competitor in the Spacex Hyperloop pod competition, Carnegie Mellon University’s Hyperloop team is building a version of the Hyperloop pod using simulation with the theory that electromagnetic braking is the most effective way to slow the Hyperloop pod. Continue reading