High-fidelity and Detailed Chemistry Approaches in IC Engine Modeling

In order to accurately meet legislated fuel efficiency and emission standards, present day IC engines operate across complex combustion modes and use novel fuel formulations. Accurate simulation of these modes and fuel formulations requires the use of detailed chemical mechanisms, which typically span hundreds of species and chemical reactions. Even with advances in modern computing technology and algorithms, detailed chemistry simulation approaches are computationally time consuming and scale with the level of detail employed. Continue reading

Engineers Harness the Power of the Adjoint Solver

In a previous blog, I shared with you my excitement about the power of the adjoint solver technology for shape optimization from ANSYS. Since then I have been working tirelessly to make this remarkable technology even more capable. CFD engineers can now understand their designs better and can perform smart shape optimization, all for larger problems with richer physics thanks to the adjoint solver technology.

My numerous interactions with people from all around the world confirmed what I knew: the adjoint solver technology is powerful and has the capability to enable a sea-change in the fluid design process. The technology is already having a positive disruptive impact on design, especially among the early adopters. Products are being improved. Established concepts about some types of fluid systems and how they function have been overturned. New manufacturing procedures are being attempted in order to produce the shapes indicated by the adjoint.

Continue reading

Orchestrating the Simulation Process with ANSYS ACT Wizards

ANSYS Workbench’s Project Schematic does a great job serving as a canvas for engineers to compose their simulation workflows. Depending on your simulation process, you may want to capture your workflows and abstract them one step further. Starting with ANSYS 16.0 you can abstract the simulation process by leveraging new ANSYS ACT functionality. With ANSYS ACT Wizards you can capture your company’s or industry’s simulation techniques and deploy them in a simple, easy-to-use app for engineers, designers, and analysts. Continue reading

If/Else Parameter Expressions

We occasionally get questions about writing if/else parameter expressions. For instance, users may be setting up a parametric model where the heat turns on only under certain conditions or perhaps an input or output is best expressed as a step function.

Yes, you can do this with expressions. Lets look at some basic examples. Continue reading

CFD and Structural Meshing: Who Moved My Node?

meshing“Meshing”… Usually throwing this single word to a group of structural or CFD analysts will start interesting and passionate discussions. Meshing is definitely a key part of the simulation process and requires attention. As analysts, how many hours did we or do we spend on meshing? Probably too many —  especially if you have been in the simulation world for many years and started when automation of meshing was not so common. But after all, meshing is just one of the tools that we need to get accurate results and we should spend more time looking at simulation results than meshing our models. Continue reading

How to Apply a Harmonic Base Excitation Natively in ANSYS Mechanical Workbench 16.0

In a previous post, I have presented how to apply a harmonic base excitation in ANSYS Mechanical 15.0 using three different techniques. Among those techniques, we had the great ACT extension that has received a great attention due to its ease of use and practicality.

ANSYS 16.0 offers the capability of applying a harmonic base excitation natively, and without the need for the ACT. Acceleration applied as a base excitation uses the Enforced Motion Method. Continue reading

How to Create ANSYS Workbench Parameters and Named Selections with Catia

In previous posts, we showed you how to parameterize DesignModeler, Spaceclaim and Creo Parametric.  Very recently, we had for for creating Named Selections and Parameters in NX.  Today, we finally get to one for Catia. I don’t have Catia installed on my computer, so thanks to Richard Mitchell, UK Sales Support Manager for recording the video.

Simulation driven product development has been a key theme at ANSYS for well over a decade, we often just refer to it by its acronym.  It is the reason that ANSYS Workbench was designed to be a parametric and persistent platform. Tools like DX can help you drive those parameters, but first, you need to parameterize your model! Continue reading

How to Create ANSYS Workbench Parameters and Named Selections with NX

ANSYS Workbench was designed to be a parametric and persistent platform so that you could easily perform design studies and really get into simulation driven product development.  Tools like DX can help you drive those parameters, but first, you need to parameterize your model.

You can parameterize the physics or even the meshing, but being able to parameterize the CAD using our bi-directional CAD interfaces is a real ANSYS Advantage. Continue reading